

John Cootes Site 246-264 Woodville Road, Merrylands Transport Impact Assessment

 Client //
 Wiltex Wholesale Pty Limited

 Office //
 NSW

 Reference //
 15S1396000

 Date //
 09/10/15

John Cootes Site

246-264 Woodville Road, Merrylands

Transport Impact Assessment

Issue: C 09/10/15

Client: Wiltex Wholesale Pty Limited Reference: 15\$1396000 GTA Consultants Office: NSW

Quality Record

Issue	Date	Description	Prepared By	Checked By	Approved By	Signed
А	25/05/15	Final	Andrew Farran	Brett Maynard	Brett Maynard	Brett Maynard
В	12/06/15	Revised Final with additional intersection analysis following community consultation	Andrew Farran	Brett Maynard	Brett Maynard	Brett Maynard
С	09/10/15	Revised to reflect updated yields	Andrew Farran	Brett Maynard	Brett Maynard	B.T. Maynard

© GTA Consultants (GTA Consultants (NSW) Pty Ltd) 2015 The information contained in this document is confidential and intended solely for the use of the client for the purpose for which it has been prepared and no representation is made or is to be implied as being made to any third party. Use or copying of this document in whole or in part without the written permission of GTA Consultants constitutes an infringement of copyright. The intellectual property contained in this document remains the property of GTA Consultants.

Melbourne | Sydney | Brisbane Canberra | Adelaide | Perth Gold Coast | Townsville

Executive Summary

A Planning Proposal is to be lodged with Parramatta City Council to amend the current planning controls for the site located at 246-264 Woodville Road in Merrylands. An indicative development yield for the site comprises some 590 residential apartments and 8,400sq.m of non-residential land uses, including supermarket, retail and community uses. Vehicle access to the site is proposed via a new signalised intersection to Woodville Road, as well as via two local connections to Lansdowne Street and Highland Street. The access points would be connected by a new internal public street network.

The proposed development has a DCP parking requirement to provide in the order of 1,143 car parking spaces. It is anticipated that this level of car parking will generally be provided within two basement car park levels, noting that there may be an opportunity to share some of the short-term retail and residential visitor parking demands.

It is envisaged that bicycle parking for the development will generally be provided in accordance with the requirements set out in the DCP.

The development is anticipated to generate in the order of 720 trips during the PM peak hour (including 580 new trips) and 870 trips during the Saturday lunchtime peak hour (including 700 new trips).

When developing the vehicle access strategy for the site, three options were considered for the primary vehicle access point from Woodville Road:

- via Oxford Street and Highland Street
- via a new access opposite Kimberley Street
- via Lansdowne Street

Given the level of traffic anticipated to be generated by the development it is considered most appropriate to provide a new access road rather than relying on the existing local road network for access. This was particularly pertinent given the sensitivities of the existing surrounding land uses including a primary school and traditional low density residential dwellings. Further to this it is noted that:

- The Oxford Street corridor already carries significant through traffic volumes and has limited spare capacity.
- While all turning movements are currently available at Lansdowne Street, traffic signals at this location could encourage additional through traffic between Woodville Road and Railway Terrace.
- Signalising Kimberley Street would provide improved access to the residential area east of Woodville Road, as well as a direct connection to the site and associated local shopping facilities. This would limit turning movements on/off Woodville Road for such local trips.

Whilst it is acknowledged that the future signalised intersection to the site is located relatively close to the existing Oxford Street signals, it is still considered to be offset greater than minimum requirements. Indeed, whilst the proposed intersection treatment (incorporating the downstream right turn lane at Oxford Street) is not typical, there are several examples of similar facilities throughout metropolitan Sydney. It is noted that the future signals will be coordinated with the existing signals located at Oxford Street to minimise any adverse impacts.

Based on the above the proposed access strategy is considered to balance the needs of maintaining through traffic capacity on Woodville Road, vehicles accessing the site and the amenity of surrounding residents, and as such, is considered appropriate.

15S1396000 // 09/10/15 Transport Impact Assessment // Issue: C John Cootes Site, 246-264 Woodville Road, Merrylands

Table of Contents

1.	Intro	oduction	1
	1.1	Background	1
	1.2	Purpose of this Report	1
	1.3	References	1
2.	Exis	ting Conditions	2
	2.1	Subject Site	2
	2.2	Road Network	3
	2.3	Traffic Volumes	5
	2.4	Existing Travel Characteristics	10
	2.5	Woodville Road Urban Design Study (Draft)	12
	2.6	Sustainable Transport	12
3.	Dev	velopment Proposal	15
	3.1	Land Uses	15
	3.2	Vehicle Access	15
	3.3	Car Parking	16
	3.4	Pedestrian and Bicycle Facilities	16
	3.5	Overview	16
4.	Parl	king Assessment	18
	4.1	Car Parking	18
	4.2	Active Transport	19
	4.3	Loading Arrangements	19
	4.4	Green Travel Plan	20
5.	Traf	fic Impact Assessment	21
	5.1	Traffic Generation	21
	5.2	Distribution and Assignment	23
	5.3	Proposed Intersection Works	27
	5.4	Traffic Impact	29
	5.5	Staging	33
6.	Cor	nclusion	35

Appendices

- A: Survey Results
- B: SIDRA INTERSECTION Results

Figures

Figure 2.1:	Subject Site and Its Environs – Street Map	2
Figure 2.2:	Subject Site and Its Environs – Aerial Map	3
Figure 2.3:	Woodville Road – Looking South	4
Figure 2.4:	Oxford Street – Looking West	4
Figure 2.5:	Highland Street – Looking South	5
Figure 2.6:	Lansdowne Street – Looking West	5
Figure 2.7:	Existing Weekday AM Peak Hour Traffic Volumes [1]	6
Figure 2.8:	Existing Weekday PM Peak Hour Traffic Volumes [1]	7
Figure 2.9:	Existing Saturday Lunchtime Peak Hour Traffic Volumes [1, 2]	8
Figure 2.10:	ABS Journey to Work Data – Travel Zones	10
Figure 2.11:	Top Ten Ranking Origin Locations	11
Figure 2.12:	Methods of Transport from Origin Locations	11
Figure 2.13:	Top Ten Ranking Destination Locations	11
Figure 2.14:	Methods of Transport to Destination Locations	11
Figure 2.15:	Surrounding Public Transport Facilities	13
Figure 3.1:	Indicative Site Layout	17
Figure 5.1:	Weekday PM Peak Hour Site Generated Traffic Volumes	24
Figure 5.2:	Saturday Lunchtime Peak Hour Site Generated Traffic Volumes	25
Figure 5.3:	Weekday PM Peak Hour Post Development Traffic Volumes	26
Figure 5.4:	Saturday Lunchtime Peak Hour Post Development Traffic Volumes [1]	27
Figure 5.5:	Proposed Access Arrangements – New Signalised Intersection	28
Figure 5.6:	Proposed Access Arrangements – New Signalised Intersection	31
Figure 5.7:	Potential LATM Measures	32
Figure 5.8:	Indicative Staging Plan	33

Tables

Table 2.1:	Woodville Road Average Vehicle Speeds [1]	4
Table 2.2:	SIDRA INTERSECTION Level of Service Criteria	9
Table 2.3:	Existing Operating Conditions	9
Table 2.4:	Comparison of ABS Journey to Work Data	12
Table 2.5:	Public Transport Provision	13
Table 3.1:	Indicative Development Schedule	15
Table 4.1:	DCP Car Parking Requirements	18
Table 4.2:	Bicycle Parking Requirements	19
Table 5.1:	Estimated Development Traffic Generation	21

Table 5.2:	RMS Non-Residential Traffic Generation Rates	21
Table 5.3:	Summary of Site Traffic Generation [1]	22
Table 5.4:	Trip Types for the Proposed Development [1]	23
Table 5.5:	Traffic Generation	23
Table 5.6:	Post Development Operating Conditions	29
Table 5.7:	Daily Traffic Volume Capacity Assessment	32
Table 5.8:	Vehicle Access Provisions by Stage	33

1. Introduction

1.1 Background

It is understood that a Planning Proposal is to be lodged with Parramatta City Council to amend the current planning controls for the site located at 246-264 Woodville Road in Merrylands.

The Planning Proposal seeks to rezone the site to a B4 Mixed use zone and increase the permissible height limits for the site and introduce a site specific floor space ratio. An indicative development yield for the site comprises some 590 residential apartments set above 8,400sq.m GFA of lower level non-residential land uses.

GTA Consultants (GTA) was commissioned by Wiltex Wholesale Pty Limited in February 2015 to undertake a transport impact assessment for the proposed development.

1.2 Purpose of this Report

This report sets out an assessment of the anticipated transport implications of the proposed development, including consideration of the following:

- i existing traffic and parking conditions surrounding the site
- ii suitability of the proposed parking in terms of supply (quantum)
- iii service vehicle requirements
- iv pedestrian and bicycle requirements
- v the traffic generating characteristics of the proposed development
- vi suitability of the proposed access arrangements for the site
- vii the transport impact of the development proposal on the surrounding road network.

1.3 References

In preparing this report, reference has been made to the following:

- an inspection of the site and its surrounds
- Parramatta City Council Development Control Plan (DCP) 2011
- Australian Standard/ New Zealand Standard, Parking Facilities, Part 1: Off-Street Car Parking AS/NZS 2890.1:2004
- traffic and car parking surveys undertaken for GTA Consultants as referenced in the context of this report
- plans and yield estimates for the proposed development prepared by Giles Tribe Architects, Job Reference 14073, dated 02/10/15.
- other documents and data as referenced in this report.

2. Existing Conditions

2.1 Subject Site

The subject site is located at 246-264 Woodville Road in Merrylands. The site of approximately 2.61 ha has frontages to Woodville Road, Lansdowne Road and Highland Street. The site currently is currently occupied by John Cootes Furniture outlet and a number of residential dwellings. The majority of the site is zoned as B6 Enterprise Corridor with the existing residential properties zoned R2 Low Density Residential.

The surrounding properties predominantly include residential uses, with the Granville South Public School abutting the site to the south and a number of retail uses fronting Woodville Road.

The location of the subject site and its surrounding environs is shown in Figure 2.1 and Figure 2.2.

Figure 2.1: Subject Site and Its Environs – Street Map

Basemap source: Sydway Publishing Pty Ltd

Figure 2.2: Subject Site and Its Environs – Aerial Map

Basemap source: NearMap (used under licence)

2.2 Road Network

2.2.1 Adjoining Roads

Woodville Road is classified as a State Road and is under the care and control of Roads and Maritime Services (RMS). It is aligned in a north-south direction running between Parramatta Road to the north and Hume Highway in the south. It is typically configured with dual three lane carriageways generally separated by a narrow concrete median. In the vicinity of the site it is configured with two through traffic lanes in each direction, with a southbound right turn lane (to the Oxford Street intersection) provided adjacent to the subject site. Clearway restrictions apply during the AM (6 to 10am) and PM (3 to 7pm) peak periods. Outside of these periods 'No Stopping' restrictions generally apply, with some unrestricted parking also provided. Pedestrian footpaths are provided on both sides of Woodville Road, whilst no formal bike facilities are provided.

The speed limit along Woodville Road is generally 70km/h, with a number of 40km/h school speed zones also provided along its length (including one for Granville South Public School located immediately south of the site).

Advice from RMS indicates that Woodville Road carries approximately 40,000 vehicles per day (vpd). Historically traffic volumes on Woodville Road peaked at 45,000vpd, but have plateaued at their current level following the opening of the M7 Motorway which provides a broader alternate route for vehicles travelling north-south in this vicinity.

A summary of the average peak hour vehicle speeds along the length of the corridor is provided in Table 2.1. The results indicate that there is significant congestion along the corridor during peak periods,

Table 2.1:	Woodville Road	Average	Vehicle	Speeds [1]
------------	----------------	---------	---------	------------

Location	Average Vehicle Speed			
Location	AM Peak Period	PM Peak Period		
Woodville Road	34km/h	28km/h		

[1] Provided by RMS at a project meeting dated 17 June 2014.

Oxford Street, Lansdowne Street and Highland Street are local roads provided in the vicinity of the site. Oxford Street is a collector road and includes a signalised intersection at Woodville Road and a grade separated crossing of the railway line to the west of the site.

Highland Street is currently a 'dead-end' street (hammerhead treatment) and primarily provides vehicle access to the adjacent residential properties and the Granville South Public School. Highland Street currently carries 500vpd^[1]. On-street car parking demands are high on Highland Street during school times and particularly during the peak pick up and drop off periods for the primary school.

Lansdowne Street forms an east-west link between Woodville Road and Railway Terrace. There are a number of Local Area Traffic Management (LATM) treatments on Lansdowne Street, including traffic islands and road narrowings that seek to reduce vehicle speeds on Lansdowne Street. Lansdowne Street currently carries 1,500vpd^[2].

Woodville Road, Oxford Street, Highland Street and Lansdowne Street are shown in Figure 2.3 to Figure 2.6.

Figure 2.3: Woodville Road – Looking South

^[2] Based on peak hour traffic counts commissioned by GTA in May 2015 and assuming a peak-to-daily ratio of 10%.

^[1] Based on week-long tube counts on Highland Street (approximately 50m north of Oxford Street) undertaken between 9 and 16 May 2015.

Figure 2.5: Highland Street – Looking South

Figure 2.6: Lansdowne Street – Looking West

2.2.2 Surrounding Intersections

The following intersections currently exist in the vicinity of the site:

- Woodville Road / Lansdowne Street / Earl Street (priority controlled offset X-intersection)
- Woodville Road / Kimberley Street (priority controlled T-intersection)
- Woodville Road / Oxford Street (signalised T-intersection)
- Oxford Street / Highland Street (priority controlled T-intersection).

2.3 Traffic Volumes

GTA Consultants commissioned traffic movement counts at the immediate Woodville Road intersections during the following peak periods:

- Wednesday 13 May 2015 between 7:00 to 9:00am and 4:00 to 6:00pm
- Saturday 16 May 2015 at between 10:00am to 1:00pm.

Supplementary traffic movement counts were undertaken on Oxford Street at Highland Street (weekday only) and Woodville Road on Thursday 21 May and Saturday 23 May 2015. The additional counts were undertaken as a result of comments made by the Granville South Public School Parents and Citizens Association at the community consultation session held at the John Cootes Furniture Warehouse on Wednesday 13 May 2015 at 6pm.

The weekday AM and PM and Saturday lunchtime peak hour traffic volumes are summarised in Figure 2.7, Figure 2.8, and Figure 2.9 respectively, with full results contained in Appendix A.

Figure 2.7: Existing Weekday AM Peak Hour Traffic Volumes [1]

 The traffic counts at the Woodville Road / Oxford Street and Oxford Street/ Highland Street intersections were undertaken on Thursday 21 May 2015.

Figure 2.8: Existing Weekday PM Peak Hour Traffic Volumes [1]

 The traffic counts at the Woodville Road/ Oxford Street and Oxford Street / Highland Street intersections were undertaken on Thursday 21 May 2015.

Figure 2.9: Existing Saturday Lunchtime Peak Hour Traffic Volumes [1, 2]

[1] The traffic counts at the Woodville Road/Oxford Street intersection were undertaken on Saturday 23 May 2015.

[2] Saturday traffic counts were not undertaken of the Oxford Street/Highland Street intersection as the capacity concerns at this intersection relate to school traffic, which is not an issue on weekends.

2.3.1 Intersection Operation

The operation of the key intersections within the study area have been assessed using SIDRA INTERSECTION^[3], a computer based modelling package which calculates intersection performance.

The commonly used measure of intersection performance, as defined by the RMS, is vehicle delay. SIDRA INTERSECTION determines the average delay that vehicles encounter and provides a measure of the level of service.

^[3] Program used under license from Akcelik & Associates Pty Ltd.

Table 2.2 shows the criteria that SIDRA INTERSECTION adopts in assessing the level of service.

Level of Service (LOS)	Average Delay per vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way & Stop Sign				
A	Less than 14	Good operation	Good operation				
В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity				
С	29 to 42	Satisfactory	Satisfactory, but accident study required				
D	43 to 56	Near capacity	Near capacity, accident study required				
E	57 to 70	At capacity, at signals incidents will cause excessive delays	At capacity, requires other control mode				
F	Greater than 70	Extra capacity required	Extreme delay, major treatment required				

Table 2.2: SIDRA INTERSECTION Level of Service Criteria

Table 2.3 presents a summary of the existing operation of each of the intersections in the vicinity of the site, with full results presented in Appendix B of this report (including operating conditions by intersection approach). It is noted that each of the intersections have been modelled in isolation.

Intersection	Peak Hour	Degree of Saturation (DOS)	Average Delay (sec)	95th Percentile Queue (m)	Level of Service (LOS)
Woodville Road/	AM	1.0	3	23	А
Lansdowne Street	PM	1.0	4	22	А
[1]	Sat	1.0	4	24	А
	AM	0.48	0	2	А
Woodville Road/ Kimberley Street	PM	0.78	2	25	А
Kimbolioy shool	Sat	0.43	1	7	А
	AM	0.91	37	412	С
Woodville Road/ Oxford Street	PM	0.94	44	437	С
	Sat	0.86	33	316	С
Oxford Street/	AM	0.48	4	40	А
Highland Street	PM	0.61	8	94	A

Table 2.3: Existing Operating Conditions

[1] The DOS results reflect the existing delays experienced by drivers on the west approach to the intersection. The through traffic on Woodville Road is not delayed by this intersection.

Table 2.3 indicates that generally each of the nominated intersections currently operates satisfactorily with manageable queues and delays on all approaches. It is noted that as a result of the heavy through movements on Woodville Road, there are significant delays for vehicles turning right from Lansdowne Street into Woodville Road, hence a DOS of 1.00 for the west approach at this intersection (i.e. at capacity). This is consistent with on-site observations at the Woodville Road/ Lansdowne Street intersection.

It is further noted that southbound queues from the Woodville Road/ Oxford Street intersection often extend beyond the Kimberley Street and Lansdowne Street intersections, particularly during the PM peak hour. Similarly, northbound queues were observed to extend a significant distance to the south of the Woodville Road/ Oxford Street intersection during the AM peak hour.

The modelling indicates that during the road network peak hours, the Oxford Street/Highland Street intersection operates with a satisfactory level of service. However, the traffic volumes indicate increased activity to and from Highland Street during peak school pick-up and drop-off

periods. During the peak 15 minute periods at 8:45am and 3:00pm, there was a three-fold increase in traffic accessing Highland Street. During these periods there was increased queuing and delays, beyond those presented in Table 2.3, on Highland Street.

2.4 Existing Travel Characteristics

2.4.1 ABS Data: Journey to Work

The NSW Bureau of Transport Statistics (BTS) is responsible for collating and analysing transport related data for the state, including census data collected by the Australian Bureau of Statistics. The smallest geographical area that travel data is available is a Travel Zone (TZ).

The ABS data has been sourced for the two nearest travel zones to the site (1229 and 1250) and are illustrated in Figure 2.10.

(Source: <u>http://www.bts.nsw.gov.au/</u>)

Employees of Study Area

Of the trips travelled by the employed population within these Travel Zones, 83% are by private vehicle, either as the driver or passenger. Travelling by public transport (train and bus services) accounts for only 5% of trips while 6% of people walked to work.

According to the 2011 Census, 49% of the employed population within the nominated Travel Zones live in the same area (Merrylands-Guildford). This indicates that many of the trips to/from work based in this area are local trips.

Figure 2.11 and Figure 2.12 illustrate the most popular origin locations and modes of transportation used to travel to work within the nominated TZs.

Figure 2.11: Top Ten Ranking Origin Locations

Source: Bureau of Transport Statistics

Residents of Study Area

Figure 2.12: Methods of Transport from Origin

Locations

Of the employed residents in the nominated Travel Zones 20% work in the same area (Merrylands-Guildford). In addition, 75% of residents commute to work by private vehicle, either as a driver or passenger, while 21% travelled by public transport (train and bus services).

Figure 2.13 and Figure 2.14 show the full list of destination locations and modes of transportation used by employed residents of the nominated TZs to travel to work.

Figure 2.13: Top Ten Ranking Destination Locations

- C.	No.	Destination or place of work (SA3)
	162	Merrylands - Guildford
	109	Parramatta
	107	Sydney Inner City
1	51	Auburn
Ū.,	50	No fixed place of work
1	34	Strathfield - Burwood - Ashfield
- Û	33	Fairfield
1	29	Bankstown
1	27	Chatswood - Lane Cove
- .	25	Carlingford
	193	Other

Figure 2.14: Methods of Transport to Destination Locations

Source: Bureau of Transport Statistics

Comparison to Metropolitan Sydney

A summary of the results for the above TZs has been benchmarked against all Sydney Greater Metropolitan Region (GMR) employees and residents and is summarised in Table 2.4.

Mode	Study	Sydney GMR	
	Residents	Employees	(Employees and Residents)
Vehicle (as driver or passenger)	73%	83%	72%
Public Transport (bus or train)	21%	5%	20%
Walk or Cycle	1%	6%	4%
Other	5%	6%	4%

Table 2.4: Comparison of ABS Journey to Work Data

[2] Includes BTS Travel Modes 1229 and 1250.

Table 2.4 indicates that residents have a comparable mode share to the Sydney GMR, whilst employees have a greater reliance on private vehicle travel (83% v 72%) and a lower use of public transport (5% v 20%) compared to the Sydney GMR.

2.4.2 ABS Data: Car Ownership

ABS car ownership data has been collated for the study area, including the suburbs of Merrylands and Guildford (noting that the site is on the border of both suburbs).

A summary of the car ownership data for existing residents (for dwellings in apartment buildings) from the 2011 ABS is summarised below:

- Studio apartments: 0.16 (sample size of 31 apartments)
- 1-bedroom apartments: 0.52 (sample size of 306 apartments)
 - 1.00 (sample size of 3,114 apartments)
- 2-bedroom apartments:
 3-bedroom apartments:
- 1.29 (sample size of 3,114 dpdrimeril.
- 3-bedroom apartments:
- 1.39 (sample size of 368 apartments)

It is further noted that 24% of residents of existing studio, 1, 2 and 3-bedroom apartments do not own a car.

2.5 Woodville Road Urban Design Study (Draft)

Roberts Day, on behalf of Parramatta City Council, is currently preparing the Woodville Road Urban Design Study that looks at potential options to regenerate development along the Woodville Road corridor. The study has yet to be finalised.

2.6 Sustainable Transport

2.6.1 Public Transport

The following public transport facilities are provided in the vicinity of the site:

- Buses on Woodville Road (<100m from the site)
- Buses on Excelsior Street (400m east of the site)
- Merrylands Railway Station (1.7km northwest of the site)
- Guildford Railway Station (1.7km southwest of the site)

The nearby public transport facilities are illustrated in Figure 2.15.

Figure 2.15: Surrounding Public Transport Facilities

A review of the public transport services available in the vicinity of the site is summarised in Table 2.5.

Station Name	Bus Service / Rail Line	Frequency of Services	Walking Distance to Site	Pedestrian/Cyclist Links
Woodville Road Bus Stop	907	Every 20 – 30 minutes	<100m (2 minutes)	Pedestrian footpaths provided
Excelsior Street Bus Stop	906 908	Every 30 minutes Every 60 minutes	400m (5 minutes)	Pedestrian footpaths provided on Earl Street
Guildford	T2 Airport, Inner West and South Line T5 Cumberland Line	Every 15 minutes	1.7km (20 minutes)	Pedestrian footpaths and on- road bicycle lanes are provided in each direction on Guildford Road
Merrylands	T2 Airport, Inner West and South Line T5 Cumberland Line	Every 15 minutes	1.7km (20 minutes)	Pedestrian footpaths and wide kerbside lane provided for cyclists in each direction on Merrylands Road

 Table 2.5:
 Public Transport Provision

In addition, it is noted that Woodville Road may in the future cater for light rail services connecting Parramatta to Bankstown or alternatively could cater for a rapid bus route.

2.6.2 Pedestrian Infrastructure

Pedestrian footpaths are provided on both sides of Woodville Road, Oxford Street and Highland Street (abutting the school). Pedestrian paths are provided on the north side of Lansdowne Street (but do not extend to Railway Terrace) and are not typically provided on Kimberley Street.

A signalised pedestrian crossing of Woodville Road is provided on the north side of the Woodville Road/ Oxford Street intersection.

A shared path is provided along Railway Terrace and provides a connection to Merrylands and Guildford Railway Stations.

2.6.3 Cycle Infrastructure

Limited cycle facilities are currently provided in the vicinity of the site.

2.6.4 Local Car Sharing Initiatives

There are currently no car sharing pods located in reasonable walking distance of the site.

3. Development Proposal

3.1 Land Uses

The Planning Proposal seeks to rezone the subject site from B6 Enterprise Corridor and R2 Low Density Residential to a B4 Mixed Use zoning and permissible Floor Space Ratio of 2.24:1. Specifically, the proposal includes the construction of a number of buildings set around a central square. The buildings range from 3 to 12 storeys and include a combination of all residential and mixed uses.

A summary of the indicative land uses (subject to change) are provided in Table 3.1.

Land Use	Description	Size		
	1-bedroom	148 dwellings		
Residential	2-bedroom	383 dwellings		
Residentia	3-bedroom	59 dwellings		
	Total	590 dwellings		
Non-Residential	Supermarket, Retail and Community Use	8,362sq.m GFA (6,833sq.m NLA) [1]		

Table 3.1: Indicative Development Schedule

[1] Incorporating 3,000sq.m NLA supermarket and 3,833sq.m NLA of retail and community uses.

3.2 Vehicle Access

Vehicle access to the future land uses is proposed to be provided via a new internal road network. The internal road network would connect to the surrounding existing road network as follows:

- Signalised intersection to Woodville Road
- Priority controlled intersection to Lansdowne Street
- Continuation of Highland Street

It is proposed to provide vehicle access to the each of the buildings from the internal road network as well as to Highland Street. No direct site vehicle access is proposed from Woodville Road or Lansdowne Street.

The three existing driveways from Woodville Road to the subject site would be removed.

When developing the vehicle access strategy for the site, three options were considered for the primary vehicle access point from Woodville Road:

- via Oxford Street and Highland Street
- via a new access opposite Kimberley Street
- via Lansdowne Street

Given the level of traffic anticipated to be generated by the development it is considered most appropriate to provide a new access road rather than relying on the existing local road network for access. This was particularly pertinent given the sensitivities of the existing surrounding land uses including a primary school and traditional low density residential dwellings. Further to this it is noted that:

• The Oxford Street corridor already carries significant through traffic volumes and has limited spare capacity.

- While all turning movements are currently available at Lansdowne Street, traffic signals at this location could encourage additional through traffic between Woodville Road and Railway Terrace.
- Signalising Kimberley Street would provide improved access to the residential area east of Woodville Road, as well as a direct connection to the site and associated local shopping facilities. This would limit turning movements on/off Woodville Road for such local trips.

Based on the above the proposed access strategy is considered to balance the needs of maintaining through traffic capacity on Woodville Road, vehicles accessing the site and the amenity of surrounding residents, and as such, is considered appropriate.

Further discussion regarding the proposed intersection and vehicle access arrangements are provided in Section 5 of this report.

3.3 Car Parking

Car parking would generally be provided in basement car parking areas (typically 2 levels). The basement car parking would be complemented by on-street car parking to be provided on the new internal road network.

The provision of car parking is not yet known, however, car parking would be provided generally in accordance with the current Parramatta Council DCP requirements (refer to Section 4).

3.4 Pedestrian and Bicycle Facilities

As part of the development it is proposed to develop an active travel corridor along Lansdowne Street between the site and Railway Terrace. This would provide an improved pedestrian and cyclist connection between the site and Merrylands Railway Station.

3.5 Overview

An overview of the key transport components of the proposal are presented in Figure 3.1.

4. Parking Assessment

4.1 Car Parking

4.1.1 DCP Requirements

The car parking requirements for different development types are set out in Parramatta City Council DCP (Section 3.6.2). A review of the car parking rates and the floor area schedule results in a DCP parking requirement for the proposed development as summarised in Table 4.1. For assessment purposes, all the non-residential floor area has been assumed to be a generic retail land use.

Description	Use Size / No. DCP Pc		DCP Parking Rate	DCP Parking Requirement			
	1-bedroom 148 dwellings 1 space per dwelling		148				
Desidential	2-bedroom	383 dwellings	1.25 spaces per dwelling	479			
Residential	3-bedroom	59 dwellings	1.5 spaces per dwelling	89			
	Visitor	590 dwellings	0.25 spaces per dwelling	148			
Retail	Refer to uses indicative uses in Table 3.1	8,362sq.m GFA (6,833sq.m NLA)	1 space per 30sq.m GFA	279			
	Total						

Table 4.1: DCP Car Parking Requirements

Based on the above, the proposed development is required to provide in the order of 1,143 car parking spaces, subject to the make-up of the final land uses. It is noted that a visitor parking rate of 0.25 spaces per dwelling would typically be applied to smaller developments and represents a significant number of parking spaces in this instance. Future Development Application(s) for the site would need to justify any proposed visitor parking reduction.

4.1.2 Potential Car Parking Reductions

The provision of future car parking has not yet been determined and will be confirmed as part of any subsequent Development Application should the Planning Proposal be approved. Notwithstanding, it is envisaged that any future development on the rezoned lands would provide car parking generally in accordance with the DCP parking requirement presented above. However, there may be an opportunity to provide a shared car parking pool for the retail and residential visitor parking demands. In this regard, it is noted that residential visitor demands typically peak in the evening, whilst retail demands typically peak during the day. More specifically, it is commonly accepted that daytime residential visitor demands are 50% of the evening demands.

Therefore it could be appropriate that a reduction (based on a temporal profile of car parking demand) in residential visitor car parking could be applied.

Whilst not specifically required under the DCP, the provision of car share spaces (e.g. GoGet or similar) on-site in place of resident and/or visitor spaces should be considered. Industry evidence suggests a single car share space can replace the need for around 5 parking spaces for residents and/or visitors.

4.2 Active Transport

4.2.1 Bicycle Parking

Bicycle parking for the site should be provided in accordance with the requirements of the Parramatta City Council DCP 2011 (Section 3.6.2), as summarised in Table 4.2. The actual number of bicycle spaces to be provided may alter when the mix of non-residential land uses are refined at the Development Application stage.

Table 4.2: Bicycle Parking Requirements

Use	Size	DCP Bicycle Parking Rate [1]	Bicycle Parking Requirement
Residential	590 dwellings	1 space per 2 dwellings	295 spaces
Retail	8,362sq.m GFA	1 space per 200sq.m GFA	42 spaces
	337 spaces		

[1] Sourced from Section 3.6.2 of the Parramatta City Council DCP 2011.

Table 4.2 indicates that any future development of the John Cootes site (based on the indicative yield) should provide approximately 337 bicycle spaces.

4.2.2 Cyclist and Pedestrian Access

Cyclist and pedestrian access to the new uses would be provided from the future internal road network as well as from the surrounding road network, including Woodville Road, Lansdowne Road and Highland Street. In addition a new active transport corridor on Lansdowne Road connecting the site to Railway Terrace (which in turn provides access to both Merrylands and Guildford Railway Stations) would be beneficial in promoting local and regional active travel.

The form of the potential active transport corridor has not yet been determined, but could include a continuation of the existing footpath with an on-road mixed traffic bicycle facility, an off-road shared path, a separated cycleway or similar. The make-up of the future facility would need to be determined in consultation with Council and local residents as part of the Development Application stage.

The facility would encourage residents, customers and employees of the development to walk or cycle between the site and nearby transport nodes or the Merrylands Town Centre.

4.3 Loading Arrangements

The loading provision requirements for different development types are set out in Parramatta City Council DCP (Section 3.6.2). The DCP requires that one loading bay be provided for every 400sq.m GFA of retail floor area. Application of this rate indicates that the site would have a requirement to provide 21 loading bays to service the proposed retail land uses.

Whilst the number of loading bays for the development has not yet been determined, the provision of 21 loading bays is considered excessive for a development of this size and a dispensation of the number of loading bays to be provided will likely be sought at the Development Application stage.

All loading vehicle access will be provided from the internal road network to the site. All loading vehicles would access the site via the signalised intersection from Woodville Road or Lansdowne Street (from Woodville Road), depending on vehicle size, internal access design and final internal

road geometry. Heavy vehicles would not be permitted to use Highland Street or Lansdowne Street further west, with physical constraints expected to be provided to discourage such activity.

4.4 Green Travel Plan

The Objective of a Travel Plan as defined in the DCP (2011) is reproduced below:

"To reduce car trips and encourage the use of sustainable transport."

A Travel Plan is not technically required for the site, noting that whilst the site exceeds 5,000sq.m of gross floor area, it is located greater than 800m radial distance from a Railway Station.

Notwithstanding, it is recommended that a Travel Plan be prepared at the Development Application stage and would include the following (as per the requirements of the DCP):

- mode share targets including a reduction in single vehicle trips
- travel data estimates of future trip to and from the site
- measures to achieve the mode share targets.

5. Traffic Impact Assessment

5.1 Traffic Generation

5.1.1 Residential Land Uses

Having consideration for a range of factors including the size of units and the site location, Table 5.1 sets out traffic generation estimates for both peak hour and daily periods. It is noted that the upper range of the residential yield has been adopted to present a conservative assessment.

Table 5.1: Estimated Development Traffic Generation

A	No. of Dwellings		eration Rates	Traffic Generation Estimates		
Access	Access No. of Dwellings	Peak Hour [1]	Daily	Peak Hour	Daily	
To/from carpark	590	0.4 vehicle movements / dwelling	4 vehicle movements / dwelling	236 vehicle movements / hour	2,360 vehicle movements / day	

[1] Adopting a peak to daily ratio of 10%.

Table 5.1 indicates the residential component of the proposed development could be expected to generate approximately 2,360 vehicle movements per day and 236 vehicle movements during each respective peak hour on a typical weekday.

5.1.2 Non-Residential Land Uses

Traffic generation estimates for the non-residential development uses have been sourced from RMS 'Guide to Traffic Generating Developments' (October 2002). A summary of the generic RMS traffic generation rates and resultant traffic generation for the supermarket and retail uses are provided in Table 5.2.

Land Use	Sino	Adopted Traffic Generation Rate for Assessment			Resultant Traffic Generation			
	Size	PM Peak Hour	Sat Peak Hour	Daily	PM Peak Hour	Sat Peak Hour	Daily	
Supermarket	3,000sq.m NLA	15.5	14.7	147.5	465	441	4,425	
Retail	Retail 3,833sq.m NLA		4.6 10.7 55.5		176	410	2,127	
		641	851	6,552				

 Table 5.2:
 RMS Non-Residential Traffic Generation Rates

Table 5.2 indicates the non-residential uses of the proposed development could be expected to generate approximately 6,550 vehicle movements per day and 640 and 851 vehicle movements during the weekday PM and Saturday lunchtime peak hours.

Whilst not yet finalised the proposed mix of land uses includes supermarket, retail, medical centre, gymnasium, child care, restaurants and communities facilities. In this regard, it is anticipated that some visitors to the site would visit more than one use at a time. Reference has been made to the RMS Guide which indicates that for centres up to 10,000sq.m GLFA a multi-purpose trip reduction factor of 25% could be applied.

Application of the multi-trip reduction factor indicates the following non-residential traffic generation:

- Weekday PM Peak Hour: 481vph
- Saturday Peak Hour: 638vph
- Daily: 4,914vpd

It is noted that the non-residential uses would be expected to generate significantly less traffic during the AM peak period than the weekday PM and Saturday lunchtime peak periods.

5.1.3 Summary

A summary of the weekday PM and Saturday lunchtime peak hour and daily traffic generation for the proposed development is provided in Table 5.3.

Land Use	Weekd	ay PM Pe	ak Hour	Saturda	y Lunchtir Hour	ne Peak	Daily		
	In	Out	Total	In	Out	Total	In	Out	Total
Residential	165	73	236	118	118	236	1,180	1,180	2,360
Non-Residential	240	241	481	319	319	638	2,457	2,457	4,914
Total	405	314	717	437	437	874	3,637	3,637	7,274

Table 5.3: Summary of Site Traffic Generation [1]

[1] Adopting an in / out split of 70:30 (AM) and 50:50 (Saturday) for residential and 50:50 for non-residential (PM and Saturday).

Table 5.3 indicates that the proposed development could be expected to generate in the order of 717, 874 and 7,274 movements during the weekday PM peak hour, Saturday lunchtime peak hour and daily traffic volumes, respectively.

The AM peak hour traffic generation is anticipated to be considerably less than the weekday PM and Saturday lunchtime peak hours as the non-residential uses will be generating significantly less traffic than during the other peak periods. As such, only the critical weekday PM and Saturday lunchtime peak hours have been assessed as part of the Planning Proposal assessment.

5.1.4 Characteristic Trip Types

An important characteristic of the traffic generation of the above uses is the different types of trips which may occur. These different trip types correspond to:

- 'Primary Trips'
- 'Link-diverted trips'
- 'Non-link-diverted trips'.

Primary trips and link-diverted trips involve a vehicle either making a special trip or a modification of the route to an existing trip. Non-link-diverted trips, on the other hand, correspond to those trips which do not involve a diversion from the route that would otherwise have been taken, or in other words are trips generated by passing traffic. The important distinction here is that it is only primary trips and link-diverted trips which impact upon the external road network. Non-link-diverted trips need to be considered in the design of access driveways, turning lanes and so on, they do not constitute additional traffic per se.

Table 5.4 had been prepared to give an indication of the relative contribution each trip type makes as a proportion of all trips accessing the use.

Use	Primary Trips / Link-diverted trips (%)	Non-link-diverted trips (%)
Residential	100%	0%
Supermarket	72%	28%
Retail	72%	28%

Table 5.4: Trip Types for the Proposed Development [1]

[2] Austroads Guide to Traffic Management Part 12: Traffic Impacts of Developments (pg. 106).

A non-link-diverted trip proportion of 28% of the non-residential traffic equates to 5% and 8% of the weekday PM and Saturday lunchtime peak hour traffic volumes on Woodville Road, respectively.

5.1.5 Traffic Generation Summary

Based on the above information, Table 5.5 sets out the resultant vehicle generation for both the morning/evening peak hour and daily periods. The Table indicates that a maximum of 582 and 695 vehicle movements could be generated by the site during the PM and Saturday traffic peaks, with 5,898 additional vehicle movements generated over the entire day.

		Road Network PM Peak		Road N Saturday	letwork Peak Hour	Daily Movements		
Description	Size	Primary and Link- diverted trips	Non-link- diverted trips	Primary and Link- diverted trips	Non-link- diverted trips	Primary and Link- diverted trips	Non-link- diverted trips	
Residential	590 dwellings	236	0	236	0	2360	0	
Non- Residential (retail and supermarket)	8,362sq.m	346	135	459	179	3,538	1,376	
Total		582	135	695	179	5898	1376	

Table 5.5: Traffic Generation

5.2 Distribution and Assignment

The directional distribution and assignment of traffic generated by the proposed development will be influenced by a number of factors, including the:

- i configuration of the arterial road network in the immediate vicinity of the site
- ii existing operation of intersections providing access between the local and arterial road network
- iii distribution of households in the vicinity of the site
- iv surrounding employment centres, retail centres and schools in relation to the site
- v likely distribution of employee's residences in relation to the site
- vi configuration of access points to the site.

Having consideration to the above, for the purposes of estimating vehicle movements, the following directional distributions have been assumed:

- to Woodville Road (via new signals): 90%
 - North: 45%
 - East: 5%
 - South: 50%

- To Woodville Road (via Lansdowne Street): 5%
- Oxford Street (via Highland Street):

Based on the above, Figure 5.1 and Figure 5.2 have been prepared to show the estimated marginal increase in turning movements in the vicinity of the subject property following full site development during the weekday PM and Saturday lunchtime peak hours, respectively.

5%.

Figure 5.1: Weekday PM Peak Hour Site Generated Traffic Volumes

Figure 5.2: Saturday Lunchtime Peak Hour Site Generated Traffic Volumes

The resultant traffic volumes (existing volumes + development volumes – passing traffic discount) for the future weekday PM and Saturday lunchtime peak hour are presented in Figure 5.3 and Figure 5.4.

Figure 5.3: Weekday PM Peak Hour Post Development Traffic Volumes

Figure 5.4: Saturday Lunchtime Peak Hour Post Development Traffic Volumes [1]

 Given that there is no regular school traffic on Saturdays, the post-development traffic volumes have not been assessed at the Oxford Street/ Highland Street intersection.

5.3 Proposed Intersection Works

Subject to negotiations with RMS, it is proposed to provide a new signalised intersection to Woodville Road at the existing priority controlled intersection with Kimberley Street. The new signalised intersection would be located approximately 150m north of the existing signalised intersection of Woodville Road and Oxford Street. As such, the proposed signalised intersection providing access to the site would need to be linked or coordinated with the existing signals to the south. This would minimise the likelihood that any queuing on the south approach to the new intersection extends through the existing Woodville Road/ Oxford Street intersection.

The following works are proposed to provide the new site access to Woodville Road:

- Provision of a western approach to the existing Woodville Road/ Kimberley Street intersection (incorporating two approach lanes).
- Shift the two northbound lanes to the west (within the existing kerb line).
- Provide an additional right turn lane on Woodville Road (north approach) to cater for vehicles accessing the site.
- Maintain a dedicated turn lane for traffic turning right into Oxford Street from Woodville Road through the new intersection.
- The signal timings would be linked to the existing Woodville Road/ Oxford Street signals (i.e. approximately 145 second cycle time).

A sketch of the proposed vehicle access arrangements is illustrated in Figure 5.5. If required, a short left turn (deceleration) lane could be provided on the south approach to the intersection. However, in this regard it is noted that the modelling presented below indicates that a short left turn lane would not be required.

Figure 5.5: Proposed Access Arrangements – New Signalised Intersection

Whilst it is acknowledged that the future signalised intersection to the site is located relatively close to the existing Oxford Street signals, it is still considered to be offset greater than minimum requirements. Indeed, whilst the proposed intersection treatment (incorporating the downstream right turn lane at Oxford Street) is not typical, there are several examples of similar facilities throughout metropolitan Sydney.

Further design development and consultation with RMS would be required to progress the proposed traffic signals.

5.4 Traffic Impact

5.4.1 Peak Hour Traffic

The impact of the development traffic upon the surrounding intersections has been assessed using SIDRA INTERSECTION. On the basis of the turning movement estimates presented above, Table 5.6 presents a summary of the anticipated future operation of the intersections following the full development of the site. Detailed results of this analysis are provided in Appendix B of this report. It is noted that this assessment does not take into account any changes to the background traffic volumes as a result of intensification of existing surrounding land uses. Furthermore, the intersections of Oxford Street and Kimberley Street with Woodville Road have again been modelled in isolation¹. However, appropriate model configuration with respect to intersection coordination, cycle/ phase times and vehicle arrival profile have been adopted. It is recommended that as part of any Development Application for the site, more detailed modelling be undertaken that specifically accounts for the interaction between the two signalised intersections.

		Existing Conditions				Post Development			
Intersection	Peak Hour	Degree of Saturation (DOS)	Average Delay (sec)	95th Percentile Queue (m)	Level of Service (LOS)	Degree of Saturation (DOS)	Average Delay (sec)	95th Percentile Queue (m)	Level of Service (LOS)
Woodville Road/	PM	1.0	4	22	А	1.0	4	25	А
Lansdowne Street [1]	Sat	1.0	4	24	А	1.0	4	24	А
Woodville Road/	PM	0.78	2	25	А	0.76	9	83	А
Kimberley Street	Sat	0.43	1	7	А	0.78	11	109	А
Woodville Road/	PM	0.94	44	437	С	1.0	50	548	D
Oxford Street	Sat	0.86	33	316	С	0.89	34	357	С
Oxford Street/ Highland Street	PM	0.61	8	94	А	0.62	10	95	A

[1] The through traffic on Woodville Road would continue not to be delayed by this intersection.

In general, Table 5.6 indicates that each of the intersections are anticipated to operate with comparable of levels of service to their existing operation. Further discussion regarding each of the intersections is provided below.

Woodville Road/ Lansdowne Street Intersection

The Woodville Road/ Lansdowne Street intersection is expected to operate with only minor increases to average delays and 95th percentile queues. It is noted that the right turn out of Lansdowne Street into Woodville Road is already at capacity. Additional right turning traffic is not anticipated as a result of the development, as these movements would be accommodated at the new traffic signals. Existing right turning traffic would have the opportunity to continue through the site and access the proposed new traffic signals, potentially reducing travel time delays.

¹ The intersections are unable to be adequately modelled using the SIDRA Network function as the right turn lane from the Oxford Street intersection that extends through the proposed Kimberley Street signals is unable to be accurately coded into the program.

Woodville Road/ Kimberley Street/ Site Access Intersection

The proposed signalised intersection at Woodville Road and Kimberley Street is expected to operate at an acceptable Level of Service, with manageable queues and delays on all approaches. The modelling indicates that the majority of green time would be allocated to Woodville Road, hence minimising delays to the majority of traffic.

Woodville Road/ Oxford Street

The Woodville Road/ Oxford Street intersection is expected to operate with a LOS D during the PM peak hour (up from a LOS C) and a LOS C during the Saturday lunchtime peak hour. The Oxford Street approach would operate at capacity during the PM peak hour, noting that no additional traffic is anticipated on the Oxford Street approach from the development.

Woodville Road Signalised Intersections (Combined)

It is noted that the assessment of each of the signalised intersections presented above has been undertaken separately. A qualitative assessment of their combined operation has therefore been undertaken.

The proposed future signalised intersection servicing the site would be located approximately 150m north of the existing Oxford Street signals. Given the close proximity of the intersections, the signal timings would be coordinated to maximise efficiency for through vehicles on Woodville Road. The modelling undertaken above assumes that the existing cycle time observed at the Oxford Street signals of 145 seconds is provided at both intersections in the future.

Oxford Street carries greater traffic volumes compared to the proposed site access (circa 1500vph versus 800vph) and would therefore be allocated more green time than the site access and Kimberley Street at the new signals. As such, vehicles on Woodville Road would continue to be able to access the Oxford Street intersection with minimal disruption.

The signals would be coordinated to accommodate northbound (or inbound) movements in the AM peak hour and southbound (or outbound) movements in the PM peak hour. Whilst it is acknowledged that the right turn queue into Oxford Street would (at peak times) extend through the new signals, the new signals (and the continuation of the Oxford Street right turn lane through the new signals) would not restrict the right turn capacity at Oxford Street (i.e. the storage area for 20 vehicles to queue in the right turn lane prior to the new signals would not clear in each signal cycle).

There are anticipated to be up to 200 right turn movements from the site access onto Woodville Road during the peak hour or an average of about 8 vehicles each traffic signal cycle. There would therefore be sufficient storage area between the two signalised intersections to accommodate the vehicles turning right out of the site access.

Notwithstanding the above, it is recommended that the transport impact assessment report that would accompany the Development Application takes into account the detailed interaction of the two intersections (and associated impacts) once the design of the new traffic signals has progressed further.

Oxford Street/ Highland Street

The Oxford Street/Highland Street intersection is expected to continue to operate with comparable average delays and 95th percentile queues to its existing operation during the road network peak hours.

There are however concentrated capacity constraints at the existing Oxford Street/Highland Street intersection during peak school pick-up and drop-off periods. The peak traffic generation from the site is predicted to occur during the PM road network peak hour and the Saturday lunchtime peak hour, which would not coincide with school peak hours. However, the site would generate some traffic during these peak school periods, which may further exacerbate the congestion at the intersection.

Whilst the school peak hour congestion at the Oxford Street/Highland Street intersection is an existing constraint, it may be possible to increase the capacity and safety of this intersection as part of the development.

In this regard, GTA has reviewed a number of mitigating measures that could improve the operation of the intersection, including:

- Roundabout
- Traffic signals
- Seagull right turn treatment

As the existing capacity constraints only occur for a short period of time on a typical weekday, the review indicated that the provision of a 'seagull' right turn treatment (similar to the one provided at the Oxford Street/Harold Street intersection) would be the most appropriate treatment to improve the operation of the intersection during peak school periods. The benefit of the seagull treatment is that vehicles turning right out of Highland Street only need to initially giveway to eastbound vehicles on Oxford Street rather than vehicles in both directions as is currently the case. In addition, vehicles turning right into Highland Street would not delay westbound vehicles on Oxford Street. For reference, the existing seagull treatment at the adjacent Oxford Street/Harold Street intersection is provided in Figure 5.6.

Figure 5.6: Proposed Access Arrangements – New Signalised Intersection

Source: NearMap (used under licence, dated 6/05/15

The provision of traffic signals and/or a roundabout were investigated, however, neither treatment was consistent with other intersection treatments along the Woodville Road corridor, nor do the existing and future volumes on Highland Street warrant such treatments.

The proposed 'seagull' intersection treatment would benefit existing and future traffic accessing Highland Street.

It is noted the proposed treatment would result in the loss of a number of on-street car parking spaces which would need to be considered further by Council and local stakeholders.

5.4.2 Daily Traffic

A summary of the existing, additional and post development daily traffic volumes on the surrounding local roads are provided in Table 5.7.

		Daily Traffic Volumes		Indicative
Location	Existing	Additional	Post Development	Maximum Daily Traffic Volumes
Lansdowne Street	1,500vpd	+300vpd [1]	1,800vpd	3,000vpd (approx.)
Highland Street	500vpd	+300vpd [1]	800vpd	[2]

Table 5.7: Daily Traffic Volume Capacity Assessment

[1] Total traffic generation multiplied by the traffic to the local road network (=5,898 x 5%).

[2] Sourced from the RMS Guide to Traffic Generating Developments (Table 4.6) and assuming each road is classified as a local street.

Table 5.7 indicates that each of the surrounding local roads is anticipated to operate within the daily thresholds.

To ensure that greater levels of development traffic do not use the local road network it is recommended that some Local Area Traffic Management (LATM) measures be implemented on Lansdowne Street, Highland Street and Kimberley Street to both deter vehicles from using and slow vehicles on these local roads. The details of any LATM measures would be developed, in consultation with Council and local residents, as part of the Development Application.

The location of the potential future LATM measures is illustrated in Figure 5.7.

Figure 5.7: Potential LATM Measures

5.4.3 Summary

Against existing traffic volumes in the vicinity of the site, the additional traffic generated by the proposed development could not be expected to compromise the safety or function of the surrounding road network.

5.5 Staging

The development is proposed to be developed in three stages, as illustrated in Figure 5.8.

Figure 5.8: Indicative Staging Plan

A summary of the vehicle access arrangements for each stage are provided in Table 5.8.

Table 5.8:	Vehicle	Access	Provisions	by	Stage
Table 5.0.	Venicic	ACCC33	11041310113	~ 7	Judge

Change		Vehicle Access Provisions	
Stage	Woodville Road	Lansdowne Street	Highland Street
Stage 1	√	√	×
Stage 2	\checkmark	✓	\checkmark
Stage 3 (Overall)	√	✓	\checkmark

Table 5.8 indicates that initially vehicle access (Stage 1) will be provided from Woodville Road and Lansdowne Street.

As detailed in Table 5.3 the non-residential land uses are anticipated to generate the bulk of the traffic from the site. As such, there would be an opportunity to provide vehicle access to the

Stage 1 residential land uses via Lansdowne Road (and/or a temporary left-in, left-out Woodville Rod access) only prior to the development of the non-residential land uses. Following the development of the non-residential land uses the provision of the new signalised intersection to Woodville Road would be required to accommodate the additional traffic generation from the site.

6. Conclusion

Based on the analysis and discussions presented within this report, the following conclusions are made:

- i It is proposed to rezone the subject site from B6 Enterprise Corridor and R2 Low Density Residential to B4 Mixed Use Zone.
- ii It is recommended that car parking for the future land uses be provided in accordance with the requirements of the Parramatta DCP 2011. There may be an opportunity to share (part of) the residential visitor parking provision with the retail parking.
- iii It is recommended that bicycle parking for the future land uses be provided in accordance with the requirements of the Parramatta DCP 2011.
- iv It is proposed to provide a future active travel corridor along Lansdowne Street connecting the site to the Railway Terrace shared path and Merrylands Railway Station.
- The development is anticipated to generate in the order of 720 (including 580 new trips) and 870 (including 700 new trips) vehicle trips during the weekday PM and Saturday lunchtime peak hours, respectively.
- vi A new signalised intersection would be required at the existing Woodville Road/ Kimberley Street intersection, incorporating a new western approach servicing the subject site. Traffic modelling and initial sketch design indicates that such an intersection is feasible, however further design development and consultation with RMS would be required to progress the proposed traffic signals.
- vii There is adequate capacity in the surrounding road network, incorporating the proposed mitigating works, to cater for the traffic generated by the proposed development.
- viii The proposed traffic signals at the existing Woodville Road/ Kimberley Street intersection provide local access benefits through additional right turn opportunities to/from Woodville Road. The traffic signals would also provide a safe pedestrian crossing point along an otherwise difficult pedestrian corridor.
- ix A 'seagull' intersection treatment could be provided at the Oxford Street/ Highland Street intersection to improve operation during peak school pick-up and drop-off periods.
- x The development is anticipated to generate in the order of 7,300 daily vehicle movements, including 5,900 new vehicle trips and 1,400 passer by trips.
- xi The predicted future daily traffic volumes on Lansdowne Street and Highland Street are within their environmental capacities.
- xii It is recommended that LATM measures be implemented on Lansdowne Street, Highland Street and Kimberley Street to minimise development traffic using these residential streets. Such treatments should be cognisant of Granville South Public School operations and safety.
- xiii Against existing traffic volumes in the vicinity of the site, the additional traffic generated by the proposed development could not be expected to compromise the safety or function of the surrounding road network.
- xiv It is anticipated that the proposed development would be delivered in three stages. There would be an opportunity to deliver part of the residential component of the development prior to the implementation of the signalised intersection to Woodville Road.

Appendix A

Survey Results

Intersectio	on of Woodville	Road and Kimberley Street	Saturday, 9 May 2015
			Austraffic
Survey Start Intersection Type Intersection No. North Approach East Approach South Approach West Approach	10:00 AM T Junction 1 Woodville Road Kimberley Street Woodville Road		Woodville Road
Date	9/05/15		
Classification	Light Heavy	SILSISIIIIASI	8 7 Woodville Road

VEHICLE MOVEMENT TIME PERIOD 2 4 6 8 3 Light Heavy Σ
 Light
 Heavy
 £
 Light</t Light Heavy 10:00 10:15 10:30 10:45 11:00 11.15 11:30 11:45 12:00 12:15 12:30 12:45

										VEF	ICLE I	MOVE	MENT										
TIME PI	ERIOD		2			3				4			6			7			8		GRA	ND T	OTAL
		Light I	leavy	Σ	Light	t Hea	vy	Σ	Light	Heavy	Σ	Light	Heav	yΣ	Light	Heavy	(Σ	Light	Heav	yΣ	Light	Heav	yΣ
10:00 -	11:00	1158	50	1208	8	: 0		8	0	0	0	61	1	62	0	0	0	1352	59	1411	2579	110	2689
10:15 -	11:15	1247	52	1299	9	0	1.1	9	0	0	0	67	2	69	0	0	0	1299	58	1357	2622	112	2734
10:30 -	11:30	1285	54	1339	8	0	i.	8	0	0	0	64	2	66	0	0	0	1322	57	1379	2679	113	2792
10:45 -	11:45	1332	65	1397	8	0	ě.	8	0	0	0	69	2	71	0	0	0	1381	55	1436	2790	122	2912
11:00 -	12:00	1373	60	1433	10	1	: 1	11	0	0	0	64	2	66	0	0	0	1386	58	1444	2833	121	2954
11:15 -	12:15	1395	62	1457	10	1	1	11	0	0	0	56	1	57	1	0	1	1421	60	1481	2883	124	3007
11:30 -	12:30	1458	65	1523	8	1		9	0	0	0	56	0	56	1	0	1	1416	59	1475	2939	125	3064
11:45 -	12:45	1466	62	1528	8	2	- 1 1	10	0	0	0	59	0	59	1	0	1	1413	64	1477	2947	128	3075
12:00 -	13:00	1486	61	1547	7	1		8	0	0	0	58	0	58	1	0	1	1419	58	1477	2971	120	3091

Camera Position

			VEHICLE I	MOVEMENT					VEHICLE N	NOVEMENT		
TIME PERIOD	1	2	3	4	5	6	7	8	9	10 11	12	GRAND TOTAL
	Light Heavy Σ Light Heavy Σ	Light Heavy Σ	Light Heavy Σ									
10:00 - 10:15	9 0 9	258 15 273	2 0 2	0 0 0	0 0 0	4 0 4	0 0 0	356 15 371	1 0 1	1 0 1 1 0 1	6 0 6	638 30 668
10:15 - 10:30	13 0 13	282 14 296	6 0 6	0 0 0	0 0 0	5 0 5	1 0 1	317 13 330	3 0 3	4 0 4 0 0 0	5 0 5	636 27 663
10:30 - 10:45		307 6 313	4 0 4	0 0 0	0 0 0	6 0 6	0 0 0	322 16 338	10 0 10	1 0 1 4 0 4	9 0 9	676 23 699
10:45 - 11:00	9 0 9	292 15 307	6 0 6	0 0 0	0 0 0	7 0 7	0 0 0	333 16 349	3 0 3	1 0 1 3 0 3	10 0 10	664 31 695
11:00 - 11:15	12 0 12	343 15 358	4 1 5	0 0 0	0 0 0	8 1 9	0 0 0	306 13 319	9 0 9	2 1 3 2 0 2	8 0 8	694 31 725
11:15 - 11:30	15 1 16	310 15 325	4 0 4	0 0 0	0 0 0	6 0 6	0 0 0	336 13 349	4 0 4	2 0 2 4 0 4	12 1 13	693 30 723
11:30 - 11:45	i 19 0 19	351 18 369	3 0 3	0 0 0	0 0 0	6 0 6	0 0 0	391 12 403	9 1 10	3 0 3 3 0 3	14 0 14	799 31 830
11:45 - 12:00	9 0 9	333 11 344	4 0 4	0 0 0	0 0 0	7 0 7	0 0 0	353 19 372	7 0 7	2 0 2 1 0 1	8 0 8	724 30 754
12:00 - 12:15	i 13 1 14	361 20 381	2 0 2	1 0 1	0 0 0	3 0 3	0 0 0	328 15 343	9 0 9	7 0 7 0 0 0	7 0 7	731 36 767
12:15 - 12:30	13 0 13	377 17 394	5 0 5	0 0 0	0 0 0	10 0 10	0 0 0	312 11 323	7 0 7	2 0 2 2 0 2	6 0 6	734 28 762
12:30 - 12:45	20 2 22	367 16 383	3 0 3	0 0 0	0 0 0	7 0 7	0 0 0	397 19 416	6 0 6	0 0 0 3 0 3	11 0 11	814 37 851
12:45 - 13:00	16 0 16	350 10 360	4 0 4	0 0 0	0 0 0	4 0 4	0 0 0	352 13 365	10 0 10	5 0 5 2 0 2	11 0 11	754 23 777
Σ	161 5 166	3931 172 4103	47 1 48	1 0 1	0 0 0	73 1 74	1 0 1	4103 175 4278	78 1 79	30 1 31 25 0 25	107 1 108	8557 357 8914

HOURLY FLOW													
			VEHICLE I	MOVEMENT					V	EHICLE MOVEMEN	Т		
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Σ												
10:00 - 11:00	44 1 45	1139 50 1189	18 0 18	0 0 0	0 0 0	22 0 22	1 0 1	1328 60 1388	3 17 0 17	7 0 7	8 0 8	30 0 30	2614 111 2725
10:15 - 11:15	47 1 48	1224 50 1274	20 1 21	0 0 0	0 0 0	26 1 27	1 0 1	1278 58 1336	6 25 0 25	8 1 9	9 0 9	32 0 32	2670 112 2782
10:30 - 11:30	49 2 51	1252 51 1303	18 1 19	0 0 0	0 0 0	27 1 28	0 0 0	1297 58 1355	5 26 0 26	6 1 7	13 0 13	39 1 40	2727 115 2842
10:45 - 11:45	55 1 56	1296 63 1359	17 1 18	0 0 0	0 0 0	27 1 28	0 0 0	1366 54 1420	25 1 26	8 1 9	12 0 12	44 1 45	2850 123 2973
11:00 - 12:00	55 1 56	1337 59 1396	15 1 16	0 0 0	0 0 0	27 1 28	0 0 0	1386 57 1443	3 29 1 30	9 : 1 : 10	10 0 10	42 1 43	2910 122 3032
11:15 - 12:15	56 2 58	1355 64 1419	13 0 13	1 0 1	0 0 0	22 0 22	0 0 0	1408 59 1467	29 1 30	14 0 14	8 0 8	41 1 42	2947 127 3074
11:30 - 12:30	54 1 55	1422 66 1488	14 0 14	1 0 1	0 0 0	26 0 26	0 0 0	1384 57 1441	32 1 33	14 0 14	6 0 6	35 0 35	2988 125 3113
11:45 - 12:45	55 3 58	1438 64 1502	14 0 14	1 0 1	0 0 0	27 0 27	0 0 0	1390 64 1454	29 0 29	11 0 11	6 0 6	32 0 32	3003 131 3134
12:00 - 13:00	62 3 65	1455 63 1518	14 0 14	1 0 1	0 0 0	24 0 24	0 0 0	1389 58 1447	32 0 32	14 0 14	7 0 7	35 0 35	3033 124 3157 F

Intersectio	on of Woodville Roa	d and Kimberley Street	Wednesday, 13 May 2015
			Austraffic
Survey Start Intersection Type Intersection No. North Approach East Approach South Approach West Approach	7:00 AM 16:00 PM T Junction Woodville Road Kimberley Street Woodville Road		Woodville Road
Date	13/05/15		
Classification	Light Heavy	2 C REFERENCE	8 7 Woodville Road

Camera Position

										VEF	ICLE I	MOVEN	IENT										
TIM	IE PER	IOD		2			3			4			6			7			8		GRA	ND TO	DTAL
			Light	Heavy	Σ	Light	Heavy	Σ	Light	Heavy	Σ	Light	Heavy	Σ	Light	Heavy	Σ	Light	Heavy	Σ	Light	Heavy	Σ
7:00	-	7:15	284	30	314	1	0	1	0	0	0	5	1	6	0	0	0	437	39	476	727	70	797
7:15	-	7:30	280	24	304	0	0	0	0	0	0	11	0	11	0	0	0	455	41	496	746	65	811
7:30	-	7:45	301	22	323	0	0	0	0	0	0	6	1	7	0	0	0	369	27	396	676	50	726
7:45	-	8:00	302	26	328	1	0	1	0	0	0	4	2	6	0	0	0	336	23	359	643	51	694
8:00	-	8:15	281	19	300	5	1	6	0	0	0	9	0	9	1	0	1	289	18	307	585	38	623
8:15	-	8:30	260	26	286	2	0	2	0	0	0	6	1	7	0	0	0	282	30	312	550	57	607
8:30	-	8:45	295	26	321	1	0	1	0	0	0	10	0	10	0	0	0	230	24	254	536	50	586
8:45	-	9:00	291	27	318	8	0	8	0	0	0	7	2	9	0	0	0	196	28	224	502	57	559
	Σ		2294	200	2494	18	1	19	0	0	0	58	7	65	1	0	1	2594	230	2824	4965	438	5403

										VEF	ICLE N	NOVEN	IENT										
TIME	E PEF	RIOD		2			3			4			6			7			8		GRA	ND TO	DTAL
			Light	Heavy	Σ	Light	Heavy	Σ	Light	Heavy	Σ	Light	Heavy	Σ	Light	Heavy	Σ	Light	Heavy	Σ	Light	Heavy	Σ
16:00	-	16:15	456	23	479	2	0	2	0	0	0	23	1	24	0	0	0	348	24	372	829	48	877
16:15	-	16:30	453	33	486	2	0	2	0	0	0	20	0	20	0	0	0	356	21	377	831	54	885
16:30	-	16:45	438	16	454	1	0	1	0	0	0	15	1	16	0	0	0	312	16	328	766	33	799
16:45	-	17:00	419	23	442	4	0	4	0	0	0	17	0	17	0	0	0	346	27	373	786	50	836
17:00	-	17:15	430	16	446	3	0	3	0	0	0	23	4	27	0	0	0	348	21	369	804	41	845
17:15	-	17:30	443	14	457	4	0	4	0	0	0	13	0	13	0	0	0	411	19	430	871	33	904
17:30	-	17:45	437	18	455	5	0	5	0	0	0	25	0	25	0	0	0	330	9	339	797	27	824
17:45	-	18:00	431	20	451	2	0	2	0	0	0	22	0	22	0	0	0	387	15	402	842	35	877
	Σ		3507	163	3670	23	0	23	0	0	0	158	6	164	0	0	0	2838	152	2990	6526	321	6847

HOURLY FLOW							
			VEHICLE I	MOVEMENT			
TIME PERIOD	2	3	4	6	7	8	GRAND TOTAL
	Light Heavy S	Light Heavy S	Light Heavy S	Light Heavy S	Light Heavy Σ	Light Heavy Σ	Light Heavy Σ
7:00 - 8:00 7:15 - 8:15	1167 102 1269	2 0 2	0 0 0	26 4 30	0 0 0	1597 130 1727	2792 236 3028 F
7:15 - 8:15	1164 91 1255	6 1 7	0 0 0	30 3 33	1 0 1	1449 109 1558	2650 204 2854
7:30 - 8:30	1144 93 1237	8 1 9	0 0 0	25 4 29	1 0 1	1276 98 1374	2454 196 2650
7:45 - 8:45	1138 97 1235	9 1 10	0 0 0	29 3 32	1 0 1	1137 95 1232	2314 196 2510
8:00 - 9:00	1127 98 1225	16 1 17	0 0 0	32 3 35	1 0 1	997 100 1097	2173 202 2375

HOURLY FLOW

												VEH	ICLE	MOVE	MEN.	Г												
TIME	E PEF	RIOD		2			3	3			4	4			6	6				7			8	3		GRA	ND .	TOTAL
			Light	Heavy	Σ	Light	t He	avy	Σ	Light	He	avy	Σ	Light	t He	avy	Σ	Ligh	t He	eavy	Σ	Ligh	t He	avy	Σ	Light	Heav	vy Σ
16:00	-	17:00	1766	95	1861	9	()	9	0)	0	75	1	2	77	0		0	0	136	2:8	8	1450	3212	185	5 3397
16:15	-	17:15	1740	88	1828	10	()	10	0	1)	0	75	1	5	80	0		0	0	136	2 8	5	1447	3187	178	3 3365 7 3384
16:30	-	17:30	1730	69	1799	12	. ()	12	0	1)	0	68	. (5	73	0	1	0	0	141	7 8	3	1500	3227	157	7 3384
16:45	-	17:45	1729	71	1800	16	. ()	16	0	1)	0	78	4		82	0	1	0	0	143	5 7	6	1511	3258	151	1 3409
17:00	-	18:00			1809	14	()	14	0	1	0	0	83	4		87	0	1	0	0	147	6 6	4	1540	3314	136	3450

Intersectio	on of Woodville Roa	d, Lansdowne Street and Earl Street	Wednesday, 13 May 2015
			Austraffic
Survey Start Intersection Type Intersection No. North Approach East Approach South Approach West Approach	7:00 AM 16:00 PM Cross Junction Woodville Road Earl Street Woodville Road Lansdowne Street	Line Sites	Woodville Road N 1 1 1 1 1 1 1 1
Date	13/05/15	ransde	·····································
Classification	Light Heavy	2012-05-0107-05-02	9 7 8 Woodville Road

Camera Position																																							
							VE	HICLE I	MOVE	MENT																VE	HICLE I	MOVEN	IENT										
TIME PERIOD	1			2			3			4			5	;			6			7			8			9			10			11			12		GRA	ND TO	TAL
	Light Heavy	Σ	Light I	leavy	Σ	Light	Heavy	Σ	Light	Heavy	/ Σ	Ligh	it Hea	avy Σ	E I	Light H	leavy	Σ	Light	Heavy	Σ	Light	Heavy	γ Σ	Light	Heavy	Σ	Light	Heavy	Σ	Light	Heav	yΣ	Light	Heavy	ί Σ	Light	Heavy	Σ
7:00 - 7:15	8 1	9	282	30	312	2	0	2	0	0	0	0	0	()	3	0	3	0	0	0	437	38	475	2	0	2	0	0	0	0	0	0	8	0	8	742	69	811
7:15 - 7:30	8 0	8	269	24	293	0	0	0	0	0	0	0	C) (וו	7	0	7	0	0	0	456	41	497	1	0	1	2	0	2	0	0	0	6	0	6	749	65	814
7:30 - 7:45	6 1	7	291	23	314	4	0	4	0	0	0	0	C) (וו	7	0	7	3	0	3	357	27	384	9	0	9	3	0	3	5	0	5	3	1	4	688	52	740
7:45 - 8:00	7 0	7	298	25	323	2	0	2	0	0	0	0	0) ()	2	0	2	19	0	19	287	22	309	20	0	20	2	0	2	3	0	3	4	0	4	644	47	691
8:00 - 8:15	11 0	11	288	18	306	0	0	0	0	0	0	0	0) ()	5	2	7	17	2	19	265	15	280		1	10	2	0	2	6	0	6	7	0	7	610	38	648
8:15 - 8:30	10 0	10	252	26	278	2	1	3	0	0	0	0	: C) ()	6	0	6	11	1	12	276	30	306	4	0	4	5	0	5	6	0	6	10	0	10	582	58	640
8:30 - 8:45	14 0	14	285	26	311	2	0	2	0	0	0	0	0) ()	14	0	14	9	0	9	209	22	231	4	1	5	2	0	2	4	1	5	3	0	3	546	50	596
8:45 - 9:00	16 0	16	282	26	308	5	1	6	0	0	0	0	C) ()	15	0	15	14	0	14	194	29	223	6	0	6	1	0	1	3	0	3	8	0	8	544	56	600
Σ	80 2	82	2247	198	2445	17	2	19	0	0	0	0	C) ()	59	2	61	73	3	76	2481	224	2705	55	2	57	17	0	17	27	1	28	49	1	50	5105	435	5540

Woodville Road

			VEHICLE N	NOVEMENT						VEHICLE MOVEMENT	Г		
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Σ												
16:00 - 16:15	29 1 30	431 25 456	10 0 10	0 0 0	0 0 0	13 0 13	0 0 0	345 24 369	11 0 11	2 0 2	5 1 6	6 0 6	852 51 903
16:15 - 16:30	18 0 18	443 31 474	7 0 7	0 0 0	1 0 1	12 0 12	0 0 0	351 21 372	4 0 4	2 0 2	2 0 2	7 0 7	847 52 899
16:30 - 16:45	23 0 23	421 16 437	8 1 9	0 0 0	0 0 0	9 0 9	0 0 0	304 16 320	9 0 9	2 0 2	1 0 1	8 0 8	785 33 818
16:45 - 17:00	23 2 25	425 24 449	9 0 9	0 0 0	0 0 0	12 0 12	1 0 1	340 25 365	5 0 5	3 0 3	0 0 0	10 0 10	828 51 879
17:00 - 17:15	22 2 24	393 14 407	4 0 4	0 0 0	0 0 0	18 1 19	0 0 0	349 22 371	8 1 9	3 0 3	2 0 2	5 1 6	804 41 845
17:15 - 17:30	20 0 20	433 14 447	3 1 4	0 0 0	0 0 0	11 0 11	0 0 0	404 18 422	6 1 7	2 0 2	2 0 2	7 0 7	888 34 922
17:30 - 17:45	29 0 29	422 18 440	3 0 3	0 0 0	0 0 0	13 0 13	0 0 0	329 9 338	10 0 10	2 0 2	1 0 1	14 0 14	823 27 850
17:45 - 18:00	22 0 22	421 20 441	9 0 9	0 0 0	0 0 0	12 0 12	0 0 0	380 15 395	4 0 4	2 0 2	2 0 2	6 0 6	858 35 893
Σ	186 5 191	3389 162 3551	53 2 55	0 0 0	1 0 1	100 1 101	1 0 1	2802 150 2952	57 2 59	18 0 18	15 1 16	63 1 64	6685 324 7009

HOURLY FLOW														
			VEHICLE	MOVEMENT						VEHICLE MOVEMEN	Т			
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL	
	Light Heavy Σ													
7:00 - 8:00	29 2 31	1140 102 1242	8 0 8	0 0 0	0 0 0	19 0 19	22 0 22	1537 128 1665	32 0 32	7 0 7	8 0 8	21 1 22	2823 233 3056 F	
7:15 - 8:15	32 1 33	1146 90 1236	6 0 6	0 0 0	0 0 0	21 2 23	39 : 2 : 41	1365 105 1470	39 1 40	9 0 9	14 : 0 : 14	20 1 21	2691 : 202 : 2893	
7:30 - 8:30	34 1 35	1129 92 1221	8 1 9	0 0 0	0 0 0	20 2 22	50 3 53	1185 94 1279	42 1 43	12 0 12	20 0 20	24 1 25	2524 195 2719	
7:45 - 8:45	42 0 42	1123 95 1218	6 1 7	0 0 0	0 0 0	27 2 29	56 3 59	1037 89 1126	37 2 39	11 0 11	19 1 20	24 0 24	2382 193 2575	
8:00 - 9:00	51 0 51	1107 96 1203	9 2 11	0 0 0	0 0 0	40 2 42	51 3 54	944 96 1040	23 2 25	10 0 10	19 1 20	28 0 28	2282 202 2484	

HOURLY FLOW													
			VEHICLE	MOVEMENT						VEHICLE MOVEMEN	Т		
TIME PERIOD	1	2	3	4	5	6	7	8	9	10	11	12	GRAND TOTAL
	Light Heavy Σ												
16:00 - 17:00	93 3 96	1720 96 1816	34 1 35	0 0 0	1 0 1	46 0 46	1 0 1	1340 86 1426	29 0 29	9 0 9	8 1 9	31 0 31	3312 187 3499
16:15 - 17:15	86 4 90	1682 85 1767	28 1 29	0 0 0	1 0 1	51 1 52	1 0 1	1344 84 1428	26 1 27	10 0 10	5 0 5	30 1 31	3264 177 3441
16:30 - 17:30	88 4 92	1672 68 1740	24 2 26	0 0 0	0 0 0	50 1 51	1 0 1	1397 81 1478	28 2 30	10 0 10	5 0 5	30 1 31	3305 159 3464
16:45 - 17:45	94 4 98	1673 70 1743	19 1 20	0 0 0	0 0 0	54 1 55	1 0 1	1422 74 1496	29 2 31	10 0 10	5 0 5	36 1 37	3343 153 3496
17:00 - 18:00	93 2 95	1669 66 1735	19 1 20	0 0 0	0 0 0	54 1 55	0 0 0	1462 64 1526	28 2 30	9 0 9	7 0 7	32 1 33	3373 137 3510 P

R.O.A.R. DATA Reliable, Original & Authentic Results

Ph.88196847, Fax 88196849, Mob.0418-239019

All Vehicles	NO	RTH	WE	ST	SO	UTH	
	Wood	/ille Rd	Oxfo	rd St	Woodv	ville Rd	
Time Per	<u>R</u>	<u>T</u>	L	<u>R</u>	L	<u>T</u>	TOTAL
0700 - 0715	24	247	25	142	61	457	956
0715 - 0730	47	295	40	168	52	450	1052
0730 - 0745	47	271	30	163	47	490	1048
0745 - 0800	34	295	25	196	97	521	1168
0800 - 0815	59	303	27	201	76	386	1052
0815 - 0830	51	302	27	190	62	440	1072
0830 - 0845	45	318	39	177	79	486	1144
0845 - 0900	68	260	25	131	79	370	933
Period End	375	2291	238	1368	553	3600	8425

	NO	NORTH		ST	SO	JTH	
	Woodville Rd		Oxfo	rd St	Woodv	ville Rd	
Peak Per	<u>R</u>	Ţ	L	<u>R</u>	L	<u>T</u>	TOTAL
0700 - 0800	152	1108	120	669	257	1918	4224
0715 - 0815	187	1164	122	728	272	1847	4320
0730 - 0830	191	1171	109	750	282	1837	4340
0745 - 0845	189	1218	118	764	314	1833	4436
0800 - 0900	223	1183	118	699	296	1682	4201

Client		: GTA	Consul	tants			
Job No/Na	ame	: 5621	GUILD	FORD	Oxford	St	
Day/Dat	te	: Thurs	sday / 2	1st Ma	y 2015		
All Vehicles	NO	RTH	WE	ST	SO	UTH	
	Wood	ville Rd	Oxfo	rd St	Woodv	ville Rd	
Time Per	<u>R</u>	T	Ŀ	<u>R</u>	Ŀ	I	TOTAL
1430 - 1445	62	302	29	137	99	279	908
1445 - 1500	81	329	35	118	91	303	957
1500 - 1515	74	358	24	174	102	369	1101
1515 - 1530	63	408	25	134	110	369	1109
1530 - 1545	83	352	25	163	102	325	1050
1545 - 1600	127	399	21	130	120	361	1158
1600 - 1615	95	388	25	132	124	380	1144
1615 - 1630	104	417	22	151	145	346	1185
1630 - 1645	83	385	28	148	140	338	1122
1645 - 1700	104	401	23	151	137	309	1125
1700 - 1715	111	366	25	170	140	412	1224
1715 - 1730	106	436	25	191	159	448	1365
Period End	1093	4541	307	1799	1469	4239	13448
	NO	RTH	SO	UTH			
		ville Rd	WE Oxfo	-	Woody		
Peak Per	R	T	L	<u>R</u>	Ŀ	T	TOTAL
1430 - 1530	280	1397	113	563	402	1320	4075
1445 - 1545	301	1447	109	589	405	1366	4217
1500 - 1600	347	1517	95	601	434	1424	4418
1515 - 1615	368	1547	96	559	456	1435	4461
1530 - 1630	409	1556	93	576	491	1412	4537
1545 - 1645	409	1589	96	561	529	1425	4609
1600 - 1700	386	1591	98	582	546	1373	4576
1615 - 1715	402	1569	98	620	562	1405	4656
1630 - 1730	404	1588	101	660	576	1507	4836
PEAK HR	404	1588	101	660	576	1507	4836
					W	oodvill	
		PEAK	HOUR		▲		1992
		1630 ·	- 1730		1608		↓
					404		1588
		Oxfo	rd St				¥
	761						•
			101			~	
			101				
			660				
	761	Oxfo →	ord St		404	~	1366

© Copyright ROAR DATA

Ν

Woodville Rd

576

2083

1507

2248

¥

R.O.A.R. DATA

Reliable, Original & Authentic Results

Ph.88196847, Fax 88196849, Mob.0418-239019

All Vehicles	NO	RTH	WE	EST	SO	JTH	
	Woodv	Woodville Rd		ord St	Woodv	ville Rd	
Time Per	<u>T</u> <u>R</u>		L	<u>R</u>	L	Ī	TOTAL
1100 - 1115	217	75	31	175	93	288	879
1115 - 1130	329	68	30	115	86	325	953
1130 - 1145	298	69	29	174	91	347	1008
1145 - 1200	325	73	41	152	71	291	953
1200 - 1215	347	95	33	157	105	298	1035
1215 - 1230	350	82	30	130	115	299	1006
1230 - 1245	283	91	37	136	90	305	942
1245 - 1300	377	104	30	132	87	315	1045
Period End	2526	657	261	1171	738	2468	7821

	NO	RTH	WE	ST	SO	UTH	
	Woodville Rd		Oxfo	rd St	Woodv	ville Rd	
Peak Per	Ţ	R	L	R	L	<u>T</u>	TOTAL
1100 - 1200	1169	285	131	616	341	1251	3793
1115 - 1215	1299	305	133	598	353	1261	3949
1130 - 1230	1320	319	133	613	382	1235	4002
1145 - 1245	1305	341	141	575	381	1193	3936
1200 - 1300	1357	372	130	555	397	1217	4028

R.O.A.R. DATA *Reliable, Original & Authentic Results*

Ph.88196847, Fax 88196849, Mob.0418-239019

All Vehicles	WE	ST	NO	RTH	EA	ST	
	Oxfo	rd St	Highla	nds St	Oxfo	rd St	
Time Per	L	<u>T</u>	<u>R</u>	L	<u>T</u>	<u>R</u>	TOTAL
0730 - 0745	1	221	1	0	93	1	317
0745 - 0800	1	236	1	3	139	3	383
0800 - 0815	2	193	1	3	132	2	333
0815 - 0830	2	205	6	5	99	7	324
0830 - 0845	5	209	4	8	116	20	362
0845 - 0900	7	159	19	14	107	25	331
0900 - 0915	0	171	6	9	100	8	294
0915 - 0930	0	161	5	9	95	6	276
Period End	18	1555	43	51	881	72	2620

	WEST		NO	RTH	EA	ST	
	Oxford St		Highla	nds St	Oxfo	rd St	
Peak Per	L	<u>T</u>	<u>R</u>	L	Ţ	<u>R</u>	TOTAL
0730 - 0830	6	855	9	11	463	13	1357
0745 - 0845	10	843	12	19	486	32	1402
0800 - 0900	16	766	30	30	454	54	1350
0815 - 0915	14	744	35	36	422	60	1311
0830 - 0930	12	700	34	40	418	59	1263

Г

Road	01 Highland Street	Average Weekday	485
Location	approx. 50m north of Oxford Street	7 Day Average	423
Site No.	1	Weekday Heavy's	2.2%
Start Date	Saturday 9-May-15	7 Day Heavy's	2.1%
Direction	Combined		

			[ay of Week	(
	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Ave	7 Day
Time	11-May	12-May	13-May	14-May	15-May	9-May	10-May	W'day	Ave
AM Peak	108	108	98	93	102	31	20		
PM Peak	91	81	60	75	52	36	20		
0:00	0	0	4	2	0	4	5	1	2
1:00	0	0	0	0	0	2	4	0	1
2:00	0	0	0	1	0	1	2	0	1
3:00	1	1	0	0	1	2	0	1	1
4:00	1	1	1	2	0	0	0	1	1
5:00	4	9	6		5	1	2	5	4
6:00	10	8	8	9	12	3	0	9	7
7:00	11	9	13	14	11	9	5	12	10
8:00	108	108	98	93	102	21	9	102	77
9:00	48	33	65	24	47	24	10	43	36
10:00	13	15	22	12	17	31	20	16	19
11:00	24	28	33	18	21	25	18	25	24
12:00	30	16	15	25	31	21	20	23	23
13:00	33	23	22	28	19	20	20	25	24
14:00	65	34	42	48	45	16	19	47	38
15:00	91	81	60	75	52	36	20	72	59
16:00	26	12	38	19	15	13	17	22	20
17:00	22	12	34	26	21	26	12	23	22
18:00	19	22	23	22	13	17	11	20	18
19:00	11	17	9	12	10	6	12	12	11
20:00	10	11	4	8	9	6	11	8	8
21:00	10	8	10	7	12	9	4	9	9
22:00	3	3	8	10	3	4	8	5	6
23:00	1	0	1	3	10	4	5	3	3
Total	541	451	516	460	456	301	234	485	423
% Heavies	1.8%	3.1%	1.4%	1.3%	3.5%	1.3%	2.1%	2.2%	2.1%

Appendix B

SIDRA INTERSECTION Results

Woodville Road / Lansdowne Street AM Peak Hour **Existing Conditions** Giveway / Yield (Two-Way)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
Coutbul		veh/h	%	v/c	sec		veh	m		per veh	km/h
South: V	woodville	Rd - S Leg									
1	L	34	5.0	0.473	8.4	LOS A	0.0	0.0	0.00	1.08	49.0
2	Т	1753	5.0	0.473	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	1786	5.0	0.473	0.2	NA	0.0	0.0	0.00	0.02	59.7
North: V	Voodville	Rd - N Leg									
8	Т	1316	5.0	0.301	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	33	5.0	0.232	37.0	LOS C	0.7	5.4	0.92	0.99	29.8
Approa	ch	1348	5.0	0.301	0.9	NA	0.7	5.4	0.02	0.02	58.6
West: L	ansdowne	e St - W Leg									
10	L	23	5.0	0.241	48.7	LOS D	0.7	5.2	0.94	1.00	25.7
12	R	16	5.0	1.000 ⁴	501.4	LOS F	3.2	23.4	1.00	1.13	4.0
Approa	ch	39	5.0	1.000	232.2	LOS F	3.2	23.4	0.96	1.05	8.1
All Vehi	cles	3174	5.0	1.000	3.3	NA	3.2	23.4	0.02	0.03	55.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

4 x = 1.00 due to minimum capacity

Processed: Tuesday, 19 May 2015 3:55:05 PM SIDRA INTERSECTION 5.1.13.2093 Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA www.sidrasolutions.com INTERSECTION Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Lansdowne St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

. 72

Woodville Road / Lansdowne Street PM Peak Hour **Existing Conditions** Giveway / Yield (Two-Way)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
South: \	Moodvillo	veh/h Rd - S Leg	%	v/c	sec	_	veh	m	_	per veh	km/h
South.	voouville	0									
1	L	32	5.0	0.434	8.4	LOS A	0.0	0.0	0.00	1.07	49.0
2	Т	1606	5.0	0.434	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	1638	5.0	0.434	0.2	NA	0.0	0.0	0.00	0.02	59.7
North: V	Noodville	Rd - N Leg									
8	Т	1847	5.0	0.423	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	100	5.0	0.532	38.1	LOS C	2.1	15.7	0.93	1.07	29.3
Approa	ch	1947	5.0	0.532	2.0	NA	2.1	15.7	0.05	0.06	57.0
West: L	ansdowne	e St - W Leg									
10	L	35	5.0	0.263	38.6	LOS C	0.8	6.1	0.92	1.00	29.1
12	R	17	5.0	1.000 ⁴	436.6	LOS F	3.0	21.8	1.00	1.13	4.6
Approa	ch	52	5.0	1.000	168.5	LOS F	3.0	21.8	0.94	1.04	10.6
All Vehi	cles	3637	5.0	1.000	3.5	NA	3.0	21.8	0.04	0.05	54.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

4 x = 1.00 due to minimum capacity

Processed: Tuesday, 19 May 2015 3:55:03 PM SIDRA INTERSECTION 5.1.13.2093 Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA www.sidrasolutions.com INTERSECTION Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Lansdowne St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

. 72

Woodville Road / Lansdowne Street Sat Peak Hour **Existing Conditions** Giveway / Yield (Two-Way)

Moven	nent Per	formance - V	/ehicles								
May ID	T	Demand		Deg.	Average	Level of	95% Back of		Prop.	Effective	Average
Mov ID	Turn	Flow	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
Couth	Maadvilla	veh/h	%	v/c	Sec	_	veh	m	_	per veh	km/h
	vvoouville	Rd - S Leg									
1	L	34	5.0	0.413	8.4	LOS A	0.0	0.0	0.00	1.07	49.0
2	Т	1523	5.0	0.413	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	1557	5.0	0.413	0.2	NA	0.0	0.0	0.00	0.02	59.7
North: \	Noodville	Rd - N Leg									
8	Т	1613	5.0	0.369	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	68	5.0	0.314	28.5	LOS C	1.1	8.3	0.89	1.00	33.7
Approa	ch	1681	5.0	0.369	1.2	NA	1.1	8.3	0.04	0.04	58.2
West: L	ansdowne	e St - W Leg									
10	L	37	5.0	0.237	33.3	LOS C	0.8	5.5	0.90	0.99	31.4
12	R	22	5.0	1.000 ⁴	370.9	LOS F	3.3	24.4	1.00	1.17	5.3
Approa	ch	59	5.0	1.000	159.9	LOS F	3.3	24.4	0.94	1.05	11.1
All Vehi	icles	3297	5.0	1.000	3.5	NA	3.3	24.4	0.04	0.05	54.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

4 x = 1.00 due to minimum capacity

Processed: Tuesday, 19 May 2015 3:55:01 PM SIDRA INTERSECTION 5.1.13.2093 Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA www.sidrasolutions.com Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Lansdowne St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

. 72 INTERSECTION

Woodville Road / Lansdowne Street PM Peak Hour Post Development Giveway / Yield (Two-Way)

Moven	nent Per	ormance - V	ehicles								
Mov ID	Turn	Demand Flow	ΗV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
South:	Woodville	veh/h Rd - S Leg	%	V/C	sec	_	veh	m	_	per veh	km/h
1	L	57	5.0	0.460	8.4	LOS A	0.0	0.0	0.00	1.06	49.0
2	Т	1679	5.0	0.460	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	1736	5.0	0.460	0.3	NA	0.0	0.0	0.00	0.03	59.6
North: V	Voodville	Rd - N Leg									
8	Т	1967	5.0	0.450	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	100	5.0	0.642	50.0	LOS D	2.7	19.5	0.96	1.12	25.3
Approa	ch	2067	5.0	0.642	2.4	NA	2.7	19.5	0.05	0.05	56.3
West: L	ansdowne	e St - W Leg									
10	L	54	5.0	0.487	53.5	LOS D	1.6	12.0	0.95	1.05	24.3
12	R	17	5.0	1.000 ⁴	423.8	LOS F	2.9	21.1	1.00	1.13	4.7
Approa	ch	71	5.0	1.000	141.9	LOS F	2.9	21.1	0.96	1.07	12.2
All Vehi	cles	3874	5.0	1.000	4.0	NA	2.9	21.1	0.04	0.06	54.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

4 x = 1.00 due to minimum capacity

Processed: Friday, 22 May 2015 3:10:47 PM SIDRA INTERSECTION 5.1.13.2093 Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Lansdowne St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Woodville Road / Lansdowne Street Sat Peak Hour Post Development Giveway / Yield (Two-Way)

Moven	nent Per	formance - V	/ehicles								
May ID	Turn	Demand	HV	Deg.	Average	Level of	95% Back of		Prop.	Effective	Average
Mov ID	Turn	Flow		Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
South: 1	Woodville	veh/h Rd - S Leg	%	v/c	sec		veh	m		per veh	km/h
	· · · · ·	0									
1	L	62	5.0	0.451	8.4	LOS A	0.0	0.0	0.00	1.05	49.0
2	Т	1637	5.0	0.451	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	1699	5.0	0.451	0.3	NA	0.0	0.0	0.00	0.04	59.5
North: \	Noodville	Rd - N Leg									
8	Т	1726	5.0	0.395	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	68	5.0	0.409	37.3	LOS C	1.5	10.8	0.93	1.03	29.6
Approa	ch	1795	5.0	0.409	1.4	NA	1.5	10.8	0.04	0.04	57.8
West: L	ansdowne	e St - W Leg									
10	L	65	5.0	0.544	52.7	LOS D	1.9	14.1	0.95	1.07	24.5
12	R	22	5.0	1.000 ⁴	356.2	LOS F	3.2	23.5	1.00	1.16	5.5
Approa	ch	87	5.0	1.000	129.5	LOS F	3.2	23.5	0.96	1.09	13.1
All Vehi	icles	3581	5.0	1.000	4.0	NA	3.2	23.5	0.04	0.06	54.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

4 x = 1.00 due to minimum capacity

Processed: Friday, 22 May 2015 3:10:49 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com INTERSECTION Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Lansdowne St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Woodville Road / Kimberley Street **Existing Conditions** AM Peak Hour

Giveway / Yield (Two-Way)

Movem	nent Per	formance - V	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: V	Voodville	Rd - S Leg									
2	Т	1818	5.0	0.481	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approad	h	1818	5.0	0.481	0.0	NA	0.0	0.0	0.00	0.00	60.0
East: Ki	mberley \$	St - E Leg									
4	L	32	5.0	0.086	18.2	LOS B	0.3	2.2	0.81	0.94	40.1
Approad	h	32	5.0	0.086	18.2	LOS B	0.3	2.2	0.81	0.94	40.1
North: V	Voodville	Rd - N Leg									
7	L	2	5.0	0.354	8.4	LOS A	0.0	0.0	0.00	1.10	49.0
8	Т	1336	5.0	0.354	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approac	h	1338	5.0	0.354	0.0	NA	0.0	0.0	0.00	0.00	60.0
All Vehic	cles	3187	5.0	0.481	0.2	NA	0.3	2.2	0.01	0.01	59.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Tuesday, 19 May 2015 4:03:16 PM SIDRA INTERSECTION 5.1.13.2093 Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Kimberley St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Woodville Road / Kimberley Street Existing Conditions PM Peak Hour

Giveway / Yield (Two-Way)

Moven	nent Per	formance - V	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: \	Woodville	Rd - S Leg									
2	Т	1621	5.0	0.429	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	1621	5.0	0.429	0.0	NA	0.0	0.0	0.00	0.00	60.0
East: Ki	imberley S	St - E Leg									
4	L	92	5.0	0.776	82.4	LOS F	3.4	24.5	0.98	1.17	18.4
Approa	ch	92	5.0	0.776	82.4	LOS F	3.4	24.5	0.98	1.17	18.4
North: V	Noodville	Rd - N Leg									
7	L	15	5.0	0.508	8.4	LOS A	0.0	0.0	0.00	1.09	49.0
8	Т	1904	5.0	0.508	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	1919	5.0	0.508	0.1	NA	0.0	0.0	0.00	0.01	59.9
All Vehi	icles	3632	5.0	0.776	2.1	NA	3.4	24.5	0.02	0.03	56.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

 Processed: Tuesday, 19 May 2015 4:03:03 PM
 Copyright © 2000-2011 Akcelik and Associates Pty Ltd

 SIDRA INTERSECTION 5.1.13.2093
 www.sidrasolutions.com

 Project:
 P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling

 \150519sid-15S1396000-Kimberley St.sip
 8000056, GTA CONSULTANTS, ENTERPRISE

Woodville Road / Kimberley Street **Existing Conditions** Sat Peak Hour

Giveway / Yield (Two-Way)

Mover	nent Per	formance - V	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: \	Noodville	Rd - S Leg									
2	Т	1555	5.0	0.412	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approad	ch	1555	5.0	0.412	0.0	NA	0.0	0.0	0.00	0.00	60.0
East: Ki	mberley \$	St - E Leg									
4	L	61	5.0	0.283	28.9	LOS C	1.0	7.4	0.91	1.00	33.5
Approad	ch	61	5.0	0.283	28.9	LOS C	1.0	7.4	0.91	1.00	33.5
North: V	Voodville	Rd - N Leg									
7	L	8	5.0	0.433	8.4	LOS A	0.0	0.0	0.00	1.10	49.0
8	Т	1628	5.0	0.433	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approad	ch	1637	5.0	0.433	0.0	NA	0.0	0.0	0.00	0.01	59.9
All Vehi	cles	3253	5.0	0.433	0.6	NA	1.0	7.4	0.02	0.02	59.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Tuesday, 19 May 2015 4:03:27 PM SIDRA INTERSECTION 5.1.13.2093 Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Kimberley St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Copyright © 2000-2011 Akcelik and Associates Pty Ltd www.sidrasolutions.com

Woodville Road / Kimberley Street Post Development PM Peak Hour

Signals - Fixed Time Cycle Time = 145 seconds (User-Given Cycle Time)

Moven	nent P <u>er</u> f	ormance - V	/ehicle <u>s</u>								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back o Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Woodville	Rd - S Leg	/0	v/C	366		Ven	111		per veri	KII1/11
1	L	225	5.0	0.812	10.9	LOS A	12.7	92.9	0.24	0.88	47.0
2	Т	1564	5.0	0.812	2.9	LOS A	14.2	104.0	0.24	0.23	54.2
Approa	ch	1789	5.0	0.812	3.9	LOS A	14.2	104.0	0.24	0.31	53.2
East: K	imberley S	St - E Leg									
4	L	92	5.0	0.379	61.9	LOS E	8.2	60.2	0.91	0.81	22.4
5	Т	22	5.0	0.379	53.5	LOS D	8.2	60.2	0.91	0.74	22.6
6	R	21	5.0	0.379	61.6	LOS E	8.2	60.2	0.91	0.80	22.4
Approa	ch	135	5.0	0.379	60.5	LOS E	8.2	60.2	0.91	0.79	22.4
North: \	Noodville	Rd - N Leg									
7	L	15	5.0	0.457	10.4	LOS A	3.9	28.8	0.10	1.07	47.3
8	Т	1822	5.0	0.457	2.5	LOS A	4.0	28.8	0.13	0.12	55.4
9	R	202	5.0	0.804	29.4	LOS C	7.3	53.6	0.65	0.86	33.3
Approa	ch	2039	5.0	0.804	5.2	LOS A	7.3	53.6	0.18	0.20	52.0
West: F	RoadName	;									
10	L	155	5.0	0.571	17.2	LOS B	6.3	46.2	0.70	0.81	41.1
11	Т	17	5.0	0.571	9.2	LOS A	6.3	46.2	0.70	0.61	43.2
12	R	172	5.0	0.799	79.3	LOS F	12.7	93.1	1.00	0.90	18.9
Approa	ch	343	5.0	0.799	47.9	LOS D	12.7	93.1	0.85	0.84	25.9
All Vehi	cles	4306	5.0	0.812	9.8	LOS A	14.2	104.0	0.28	0.31	46.7

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Moven	nent Performance -	Pedestrian	S					
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate
		ped/h	sec		ped	m		per ped
P3	Across E approach	53	7.6	LOS A	0.1	0.1	0.32	0.32
P5	Across N approach	53	60.1	LOS F	0.2	0.2	0.91	0.91
P7	Across W approach	53	13.7	LOS B	0.1	0.1	0.43	0.43
All Ped	estrians	159	27.1	LOS C			0.56	0.56

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 5 June 2015 11:32:13 AM SIDRA INTERSECTION 5.1.13.2093 Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Kimberley St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Woodville Road / Kimberley Street Post Development Sat Peak Hour

Signals - Fixed Time Cycle Time = 145 seconds (User-Given Cycle Time)

Moven	nent P <u>er</u>	formance - V	/ehicles								
Mov ID	Turn	Demand Flow veh/h	HV %	Deg. Satn v/c	Average Delay sec	Level of Service	95% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South:	Woodville	Rd - S Leg	/0	v/C	366		Ven	111		per ven	KIII/11
1	L	260	5.0	0.860	13.0	LOS A	16.7	121.6	0.30	0.88	45.1
2	Т	1463	5.0	0.860	5.1	LOS A	22.4	163.7	0.35	0.33	50.9
Approa	ch	1723	5.0	0.860	6.3	LOS A	22.4	163.7	0.34	0.42	49.9
East: Ki	imberley S	St - E Leg									
4	L	61	5.0	0.243	53.6	LOS D	6.0	43.9	0.83	0.80	24.5
5	Т	26	5.0	0.243	45.2	LOS D	6.0	43.9	0.83	0.67	25.0
6	R	21	5.0	0.243	53.3	LOS D	6.0	43.9	0.83	0.79	24.6
Approa	ch	108	5.0	0.243	51.5	LOS D	6.0	43.9	0.83	0.76	24.6
North: V	Noodville	Rd - N Leg									
7	L	8	5.0	0.432	13.7	LOS A	7.5	54.8	0.22	1.05	44.6
8	Т	1508	5.0	0.432	5.7	LOS A	7.5	54.8	0.23	0.21	50.9
9	R	234	5.0	0.973	83.0	LOS F	17.9	130.3	1.00	1.09	18.3
Approa	ch	1751	5.0	0.973	16.1	LOS B	17.9	130.3	0.33	0.33	41.1
West: F	RoadName	9									
10	L	234	5.0	0.801	28.3	LOS B	11.2	81.6	0.77	0.88	34.1
11	Т	26	5.0	0.801	20.3	LOS B	11.2	81.6	0.77	0.73	35.2
12	R	260	5.0	0.839	75.3	LOS F	19.6	142.7	1.00	0.93	19.5
Approa	ch	520	5.0	0.839	51.4	LOS D	19.6	142.7	0.88	0.90	24.9
All Vehi	icles	4102	5.0	0.973	17.4	LOS B	22.4	163.7	0.42	0.45	40.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians												
		Demand	Average	Level of	Average Back	of Queue	Prop.	Effective				
Mov ID	Description	Flow	Delay	Service	Pedestrian	Distance	Queued	Stop Rate				
		ped/h	sec		ped	m		per ped				
P3	Across E approach	53	10.4	LOS B	0.1	0.1	0.38	0.38				
P5	Across N approach	53	53.0	LOS E	0.2	0.2	0.86	0.86				
P7	Across W approach	53	17.4	LOS B	0.1	0.1	0.49	0.49				
All Pede	estrians	159	26.9	LOS C			0.57	0.57				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Friday, 5 June 2015 11:32:29 AM SIDRA INTERSECTION 5.1.13.2093 Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Kimberley St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Woodville Road / Oxford Street Existing Conditions AM Peak Hour Signals - Fixed Time Cycle Time = 145 seconds (User-Given Cycle Time)

Moven	nent Per	formance - V	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back (Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
South:	Woodville	veh/h Rd - S Leg	%	V/C	Sec	_	veh	m	_	per veh	km/h
1	L	331	5.0	0.221	9.3	LOS A	1.4	10.5	0.07	0.68	48.0
2	Т	1704	5.0	0.909	36.2	LOS C	56.4	412.0	0.92	0.91	28.8
Approa	ch	2035	5.0	0.909	31.8	LOS C	56.4	412.0	0.78	0.87	30.8
North: \	Woodville	Rd - N Leg									
8	Т	1189	5.0	0.507	8.4	LOS A	12.2	89.3	0.32	0.29	47.6
9	R	199	5.0	0.899	93.3	LOS F	15.7	114.3	1.00	1.13	16.8
Approa	ch	1388	5.0	0.899	20.5	LOS B	15.7	114.3	0.42	0.41	37.7
West: C	Dxford St -	W Leg									
10	L	124	5.0	0.906	71.7	LOS F	33.5	244.8	1.00	0.95	20.2
12	R	804	5.0	0.906	74.4	LOS F	38.1	278.3	1.00	0.96	19.7
Approa	ch	928	5.0	0.906	74.0	LOS F	38.1	278.3	1.00	0.96	19.8
All Vehi	icles	4352	5.0	0.909	37.2	LOS C	56.4	412.0	0.71	0.75	29.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate				
		ped/h	sec		ped	m		per ped				
P5	Across N approach	53	45.6	LOS E	0.2	0.2	0.79	0.79				
P7	Across W approach	53	22.1	LOS C	0.1	0.1	0.55	0.55				
All Pede	estrians	106	33.8	LOS D			0.67	0.67				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 4 June 2015 12:55:20 PM SIDRA INTERSECTION 5.1.13.2093 Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Oxford St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Woodville Road / Oxford Street Existing Conditions PM Peak Hour Signals - Fixed Time Cycle Time = 145 seconds (User-Given Cycle Time)

Moven	nent Per	formance - V	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back (Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Woodville	Rd - S Leg									
1	L	606	5.0	0.481	10.8	LOS A	4.7	34.7	0.12	0.70	46.4
2	Т	1525	5.0	0.944	55.4	LOS D	59.9	437.2	1.00	1.05	22.9
Approa	ch	2132	5.0	0.944	42.7	LOS D	59.9	437.2	0.75	0.95	26.7
North: \	Noodville	Rd - N Leg									
8	Т	1592	5.0	0.617	4.3	LOS A	11.3	82.3	0.22	0.21	52.6
9	R	425	5.0	0.943	91.2	LOS F	31.1	226.7	1.00	1.19	17.1
Approa	ch	2017	5.0	0.943	22.6	LOS B	31.1	226.7	0.39	0.41	36.6
West: C	Dxford St -	W Leg									
10	L	106	5.0	0.943	86.5	LOS F	33.5	244.8	1.00	0.98	17.8
12	R	695	5.0	0.943	89.6	LOS F	34.1	249.1	1.00	1.00	17.3
Approa	ch	801	5.0	0.943	89.2	LOS F	34.1	249.1	1.00	0.99	17.4
All Vehi	icles	4949	5.0	0.944	42.1	LOS C	59.9	437.2	0.64	0.74	27.4

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate				
		ped/h	sec		ped	m		per ped				
P5	Across N approach	53	53.0	LOS E	0.2	0.2	0.86	0.86				
P7	Across W approach	53	27.9	LOS C	0.1	0.1	0.62	0.62				
All Pede	estrians	106	40.5	LOS E			0.74	0.74				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 4 June 2015 2:25:42 PM SIDRA INTERSECTION 5.1.13.2093 Project: P:\1551300-1399\1551396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-1551396000-Oxford St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

- -----

Woodville Road / Oxford Street **Existing Conditions** PM Peak Hour Signals - Fixed Time Cycle Time = 145 seconds (User-Given Cycle Time)

Mover	nent Per	formance - V	/ehicles								
Mov ID) Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Woodville	Rd - S Leg									
1	L	418	5.0	0.325	10.0	LOS A	2.1	15.2	0.08	0.69	47.2
2	Т	1428	5.0	0.857	35.9	LOS C	43.4	316.7	0.90	0.85	28.9
Approa	ich	1846	5.0	0.857	30.0	LOS C	43.4	316.7	0.71	0.81	31.7
North:	Woodville	Rd - N Leg									
8	Т	1319	5.0	0.511	3.8	LOS A	7.7	55.9	0.18	0.17	53.4
9	R	392	5.0	0.861	71.4	LOS F	24.9	181.7	0.98	1.13	20.2
Approa	ich	1711	5.0	0.861	19.3	LOS B	24.9	181.7	0.37	0.39	38.9
West: 0	Oxford St -	W Leg									
10	L	137	5.0	0.843	71.0	LOS F	26.7	195.3	1.00	0.92	20.3
12	R	584	5.0	0.843	71.7	LOS F	26.7	195.3	1.00	0.92	20.2
Approa	ich	721	5.0	0.843	71.6	LOS F	26.7	195.3	1.00	0.92	20.2
All Veh	icles	4278	5.0	0.861	32.7	LOS C	43.4	316.7	0.62	0.66	31.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate				
		ped/h	sec		ped	m		per ped				
P5	Across N approach	53	53.0	LOS E	0.2	0.2	0.86	0.86				
P7	Across W approach	53	26.7	LOS C	0.1	0.1	0.61	0.61				
All Pede	estrians	106	39.9	LOS D			0.73	0.73				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 4 June 2015 2:26:48 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com INTERSECTION Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Oxford St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Woodville Road / Lansdowne Street PM Peak Hour Post Development Giveway / Yield (Two-Way)

Moven	nent Per	formance - V	ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
Coutbul	Meeduille.	veh/h	%	v/c	sec		veh	m		per veh	km/h
South: V	woodville	Rd - S Leg									
1	L	57	5.0	0.460	8.4	LOS A	0.0	0.0	0.00	1.06	49.0
2	Т	1679	5.0	0.460	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	1736	5.0	0.460	0.3	NA	0.0	0.0	0.00	0.03	59.6
North: V	Noodville	Rd - N Leg									
8	Т	1967	5.0	0.450	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
9	R	100	5.0	0.642	50.0	LOS D	2.7	19.5	0.96	1.12	25.3
Approa	ch	2067	5.0	0.642	2.4	NA	2.7	19.5	0.05	0.05	56.3
West: L	ansdowne	e St - W Leg									
10	L	54	5.0	0.487	53.5	LOS D	1.6	12.0	0.95	1.05	24.3
12	R	17	5.0	1.000 ⁴	423.8	LOS F	2.9	21.1	1.00	1.13	4.7
Approa	ch	71	5.0	1.000	141.9	LOS F	2.9	21.1	0.96	1.07	12.2
All Vehi	cles	3874	5.0	1.000	4.0	NA	2.9	21.1	0.04	0.06	54.1

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

4 x = 1.00 due to minimum capacity

Processed: Friday, 22 May 2015 3:10:47 PM SIDRA INTERSECTION 5.1.13.2093 Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Lansdowne St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

- -----

Woodville Road / Oxford Street **Existing Conditions** PM Peak Hour Signals - Fixed Time Cycle Time = 145 seconds (User-Given Cycle Time)

Mover	nent Per	formance - V	/ehicles								
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec		veh	m		per veh	km/h
South:	Woodville	Rd - S Leg									
1	L	418	5.0	0.322	9.9	LOS A	2.1	15.1	0.08	0.69	47.3
2	Т	1568	5.0	0.899	39.0	LOS C	52.1	380.0	0.93	0.91	27.7
Approa	ich	1986	5.0	0.899	32.9	LOS C	52.1	380.0	0.75	0.87	30.4
North:	Woodville	Rd - N Leg									
8	Т	1459	5.0	0.555	3.1	LOS A	7.4	54.2	0.16	0.15	54.5
9	R	392	5.0	0.903	81.2	LOS F	27.0	197.4	1.00	1.16	18.5
Approa	ich	1851	5.0	0.903	19.6	LOS B	27.0	197.4	0.34	0.36	38.7
West: 0	Oxford St -	W Leg									
10	L	137	5.0	0.894	80.0	LOS F	28.9	211.1	1.00	0.96	18.8
12	R	584	5.0	0.894	80.5	LOS F	28.9	211.1	1.00	0.96	18.7
Approa	ich	721	5.0	0.894	80.4	LOS F	28.9	211.1	1.00	0.96	18.7
All Veh	icles	4558	5.0	0.903	35.0	LOS C	52.1	380.0	0.62	0.68	30.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model used.

Movement Performance - Pedestrians												
Mov ID	Description	Demand Flow	Average Delay	Level of Service	Average Back Pedestrian	of Queue Distance	Prop. Queued	Effective Stop Rate				
		ped/h	sec		ped	m		per ped				
P5	Across N approach	53	54.7	LOS E	0.2	0.2	0.87	0.87				
P7	Across W approach	53	24.9	LOS C	0.1	0.1	0.59	0.59				
All Pede	estrians	106	39.8	LOS D			0.73	0.73				

Level of Service (LOS) Method: SIDRA Pedestrian LOS Method (Based on Average Delay) Pedestrian movement LOS values are based on average delay per pedestrian movement. Intersection LOS value for Pedestrians is based on average delay for all pedestrian movements.

Processed: Thursday, 4 June 2015 3:09:22 PM Copyright © 2000-2011 Akcelik and Associates Pty Ltd SIDRA SIDRA INTERSECTION 5.1.13.2093 www.sidrasolutions.com INTERSECTION Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150519sid-15S1396000-Oxford St.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Oxford Street / Highland Street AM Peak Hour Existing Conditions Giveway / Yield (Two-Way)

Moven	nent Per	ormance - V	ehicles								
Mov ID	Turn	Demand Flow	ΗV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
East: 0	xford St -	veh/h	%	v/c	sec		veh	m		per veh	km/h
5	T	512	5.0	0.329	9.2	LOS A	5.4	39.8	1.00	0.00	44.1
6	R	34	5.0	0.329	17.9	LOS B	5.4	39.8	1.00	1.08	43.9
Approa	ch	545	5.0	0.329	9.8	NA	5.4	39.8	1.00	0.07	44.1
North: H	Highland S	St - N Leg									
7	L	20	5.0	0.125	21.4	LOS B	0.4	2.9	0.82	0.94	37.7
9	R	13	5.0	0.125	21.7	LOS B	0.4	2.9	0.82	0.95	37.7
Approa	ch	33	5.0	0.125	21.5	LOS B	0.4	2.9	0.82	0.94	37.7
West: C	Dxford St -	W Leg									
10	L	11	5.0	0.476	8.4	LOS A	0.0	0.0	0.00	1.10	49.0
11	Т	887	5.0	0.476	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	898	5.0	0.476	0.1	NA	0.0	0.0	0.00	0.01	59.8
All Vehi	icles	1476	5.0	0.476	4.1	NA	5.4	39.8	0.39	0.05	52.3

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Friday, 5 June 2015 11:01:18 AM SIDRA INTERSECTION 5.1.13.2093 Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150525highlandoxford.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Oxford Street / Highland Street PM Peak Hour Existing Conditions Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow	ΗV	Deg. Satn	Average Delay	Level of Service	95% Back o Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
		veh/h	%	v/c	sec	0011100	veh	m	Quouou	per veh	km/h
East: Oxford St - E Leg											
5	Т	1093	5.0	0.614	13.3	LOS A	12.8	93.8	1.00	0.00	40.9
6	R	25	5.0	0.614	21.9	LOS B	12.8	93.8	1.00	1.28	40.8
Approach		1118	5.0	0.614	13.5	NA	12.8	93.8	1.00	0.03	40.9
North: Highland St - N Leg											
7	L	19	5.0	0.101	23.1	LOS B	0.3	2.1	0.81	0.92	36.7
9	R	3	5.0	0.101	23.4	LOS B	0.3	2.1	0.81	0.95	36.7
Approa	Approach		5.0	0.101	23.1	LOS B	0.3	2.1	0.81	0.92	36.7
West: C	Oxford St -	W Leg									
10	L	3	5.0	0.414	8.4	LOS A	0.0	0.0	0.00	1.10	49.0
11	Т	778	5.0	0.414	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approa	ch	781	5.0	0.414	0.0	NA	0.0	0.0	0.00	0.00	59.9
All Vehicles		1921	5.0	0.614	8.1	NA	12.8	93.8	0.59	0.03	46.9

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Friday, 5 June 2015 11:02:31 AM SIDRA INTERSECTION 5.1.13.2093 Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150525highlandoxford.sip 8000056, GTA CONSULTANTS, ENTERPRISE

Oxford Street / Highland Street PM Peak Hour Post Development Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow	HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	Distance	Prop. Queued	Effective Stop Rate	Average Speed
East: Oxford St - E L		veh/h	%	v/c	sec	_	veh	m	_	per veh	km/h
		0	F 0	0.010	444		12.0	04.0	1.00	0.00	40.2
5	Т	1093	5.0	0.616	14.1	LOS A	13.0	94.9	1.00	0.00	40.3
6	R	25	5.0	0.616	22.8	LOS B	13.0	94.9	1.00	1.28	40.1
Approach		1118	5.0	0.616	14.3	NA	13.0	94.9	1.00	0.03	40.3
North: Highland St - N Leg											
7	L	19	5.0	0.567	87.9	LOS F	1.8	13.1	0.96	1.09	17.5
9	R	22	5.0	0.567	88.2	LOS F	1.8	13.1	0.96	1.06	17.5
Approach		41	5.0	0.567	88.1	LOS F	1.8	13.1	0.96	1.07	17.5
West: Oxford St - W Leg											
10	L	28	5.0	0.428	8.4	LOS A	0.0	0.0	0.00	1.08	49.0
11	Т	778	5.0	0.428	0.0	LOS A	0.0	0.0	0.00	0.00	60.0
Approach		806	5.0	0.428	0.3	NA	0.0	0.0	0.00	0.04	59.5
All Vehicles		1965	5.0	0.616	10.1	NA	13.0	94.9	0.59	0.05	45.0

Level of Service (LOS) Method: Delay (RTA NSW).

Vehicle movement LOS values are based on average delay per movement

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

SIDRA Standard Delay Model used.

Processed: Friday, 5 June 2015 11:30:02 AM SIDRA INTERSECTION 5.1.13.2093 Project: P:\15S1300-1399\15S1396000 258-264 Woodville Rd, Merrylands - John Cootes Site\Modelling \150525highlandoxford.sip 8000056, GTA CONSULTANTS, ENTERPRISE

- A Level 9, Corporate Centre 2 Box 37, 1 Corporate Court BUNDALL QLD 4217 P +617 5510 4800 F +617 5510 4814 E goldcoast@gta.com.au